
1

Euterpe - Tool support for analyzing cooperative
environments

Martijn van Welie, Gerrit C. van der Veer, Anton Eliëns
Department of Computer Science, Vrije Universiteit
de Boelelaan 1081a, 1081HV Amsterdam, Holland

{martijn, gerrit, eliens}@cs.vu.nl
http://www.cs.vu.nl/~martijn/

ABSTRACT
This paper describes a tool - EUTERPE - that offers
support for analyzing cooperative environments. The
support is based on a formal analysis of the task
model and can be done both on a logical and a visual
level. An analysis of a cooperative environment
requires a model that can formally describe the task
world and that allows meaningful analysis to be
done. Euterpe uses a logical model that is based on
Groupware Task Analysis that describes the task
world including cooperative aspects. By modeling
the task world in logic and deriving graphical
representations from it, several ways of analysis
become possible.

Keywords
Tools, Cooperation, Task Analysis

INTRODUCTION
Task analysis is useful way for getting better insight
into cooperative environments. However, it is often
also a very unstructured and time-consuming
activity. Many methods exist, but thoughts on task
models and what they describe exactly have not been
stabilized yet. Furthermore, task analysis methods
usually only deal with task modeling and not really
with task analysis. After the task world has been
modeled it is up to the analysts to interpret the task
model and find out where causes of problems can be
found or where there is room for optimization of the
work. These may be one of the reasons that cause
task analysis to be both ineffective and inefficient.
A task model that can describe the task world
including cooperative aspects and that allows some
form of analysis could improve the task analysis
process and outcome. Preferably the analysis of the
task model should be done (semi-) automatically,
thereby reducing the required effort of the analysts.
In (d’Ausburg et al., 1998) a formal approach based
on model checking techniques is described for
analyzing user interfaces. A similar approach can
also be applied to analyzing task models. However
performing a formal analysis of a task model
requires a formal representation of the task model
that is suitable for doing an analysis, especially for
analyzing cooperation. The task model therefore
needs to be based on a task analysis theory that
recognizes the cooperative aspects of the task world.
Although a formal analysis can be the basis for

analysis it is not on the level analysts prefer to work.
Hence representation tools can effectively hide the
formalism and provide means to assist in analyzing
the environment that is being studied. In addition, a
tool can also provide more structured ways of doing
task analysis. The next sections describe such a tool
- EUTERPE - based on Groupware Task Analysis that
supports formal analysis both on a logical and a
visual level. Both the used models and the analysis
primitives will be described in the next sections.

ANALYSIS TOOLS
In the area of task analysis or requirement
engineering (Loucopoulos et al., 1994) there are
many techniques and to some extent tools that can
be used. Especially in the first phase of collecting
information and representing structures not many
tools turn out to be useful or available for actual use.
An interesting tool however is for instance U-
TEL(Chung-Man et al., 1998) which is a tool that
assists in elicitation of user task models from domain
experts by natural language processing and wizards.
It is part of the model-based user interface
development environment MOBI-D(Puerta, 1997).
However, the task models that can be specified are
rather simple and do not allow roles and
responsibilities to be specified nor are any analyzing
primitives provided. In fact they are not intended for
describing cooperative aspects of the task world.
Some commercial software tools such as WinCREW
and the Observer (Noldus, 1991) also exists.
WinCREW is a tool for analyzing the behavior of
small tank crews and the Observer for human
behaviour analysis based on video analysis.
Although they were intended for analyzing
cooperative environments they use mostly statistical
methods. However for analyzing a cooperative
environment a formalism is needed that explicitly
recognizes and describes the cooperative aspects of
the task world. Such a formalism would
consequently allow more deeper analysis than just
statistical evaluation.

GROUPWARE TASK ANALYSIS
In the past task analysis has focussed mainly on
analyzing a single user and his/her tasks. Groupware
Task Analysis (Veer et al. 1996) expands task
analysis by looking at a task world from the
perspectives of work, agents, and situation. It

2

regards the task world as an organization where
many people do tasks, work together and interact
with both people and objects. From the perspective
of work GTA looks at tasks, goals, actions and
procedures within an organization. On the other
hand from the perspective of agents GTA looks at
the persons and machines that perform the work,
what their role is in the organization and how
responsibilities are allocated. When looking from the
perspective of situation, the static and dynamic
aspects of the task environment are studied. This
includes the objects that are present and events that
happen internally or externally.
In (Veer et al., 1996b) we have presented a field
study where GTA was used to analyze a cooperative
environment, in this case the social security
administration. These perspectives have been
elaborated formally into an ontology (van Welie et
al., 1998) for describing a task world. The ontology
describes how GTA looks at the task world
independently of graphical representations, by
describing the concepts and the relationships
between them.

EUTERPE
Our task analysis tool - EUTERPE -, named after one
of the 9 muses from Greek mythology presiding over
the arts and sciences, is a graphical tool that can be
used to enter task analysis data and to analyze them.
It uses the ontology as the basis for generating
representations. The ontology is operationalized
using DLP (Eliëns, 1992) an object oriented variant
of Prolog. The ontology is specified in terms of
concepts such as task, object, role, agent, event and
relationships between them, represented internally
using a logical programming language. The logical
representation is on an abstract level and it does not
imply any graphical representation. However, it is
rich enough to accommodate the extraction of the
information necessary to generate commonly used
representations such as tree structures, process flow
graphs or templates. The task world ontology is a
model that describes a way of looking at a task
world. We look at the task world in terms of a
number of concepts that are related to each other.
The following section will briefly explain the
concepts and their relationships. A more detailed
description can be found in (van Welie et al., 1998).

Concepts and Attributes
This section will define the concepts and the next
section will define their relationships in detail.
Object. An object refers to a physical or non-
physical entity. A non-physical entity could be
anything ranging from messages, passwords or
addresses to gestures and stories. Objects have
attributes consisting of attribute-name and value
pairs. What can be done with an object is specified
by actions, for instance move, change, turn off etc.
Furthermore, objects may be in a type hierarchy and
can also be contained in other objects.

Agent. An agent is an entity that is considered
active. Usually agents are humans but groups of
humans or software components may also be
considered agents. Agents are not specific
individuals (like Chris) but always indicate classes
of individuals with certain characteristics.
Role. A role is a meaningful collection of tasks
performed by one or more agents. A meaningful role
is responsible for the tasks that it encompasses and
roles can be hierarchically composed.
Task. A task is an activity performed by agents to
reach a certain goal. A task typically changes
something in the task world and requires some
period of time to complete. Complex tasks can be
decomposed into smaller subtasks. Tasks are
executed in a certain order and the completion of
one task can trigger the execution of one or more
other tasks. A task could also be started because of
an event that has occurred in the task world.
Important for the task concept is the distinction
between unit tasks and basic tasks, where (ideally) a
unit task should only be executed by performing one
or more basic tasks. The relationship between the
unit task and basic task is interesting because it can
indicate the problems that an agent may have in
reaching his goals.
A unit task is defined by Card, Moran and Newell as
the simplest task that a user really wants to perform.
A basic task is a task for which a system provides a
single function. Usually basic tasks are further
decomposed into user actions and system operations.
A user action is an action done by the human users
that is only meaningful in the context of its basic
task (e.g. a key press). A system operation is an
action done by a system; it is not a typical task
because it, as such, serves no goal for the user.
Event. An event is a change in the state of the task
world at a point in time. The change may reflect
changes of attribute values of internal concepts such
as Object, Task, Agent or Role or could reflect
changes of external concepts such as the weather or
electricity supply. Events influence the task
execution sequence by triggering tasks. This model
does not specify how the event is created or by
whom.

Relationships
The concepts defined in the previous section are
related in specific ways. In this section we sketch the
relationships. For each relationship the first-order
predicate definition is given and explained. Figure 1
shows all the concepts and relationships together in a
diagram.
Uses. The XVHV�7DVN�2EMHFW�$FWLRQ� relationship
specifies which object is used in executing the task
and how it is used. The $FWLRQ specifies what is
being done with the object. It typically changes the
state of the object.
Triggers. The WULJJHUV�7DVN�(YHQW�� WULJJHUHG7DVN�

WULJJHU7\SH� relationship is the basis for specifying
task flow. It specifies that a task is triggered (started)
by an event or a task and the type of the trigger.

3

Several triggertypes are possible such as OR, AND,
NEXT to express choice, parallelism or sequences of
tasks.
Plays. Every agent should play one or more roles.
The SOD\V�$JHQW�� 5ROH�� $SSRLQWPHQW� relationship
also indicates how this role was obtained. Currently,
the $SSRLQWPHQW parameter can be $66,*1('�

'(/(*$7('��0$1'$7('�or 62&,$/�

Performed_by. The relationship SHUIRUPHGBE\�7DVN�

$JHQW�5ROH� specifies that a task is performed by an
agent. This does not mean that agent is also the one
who is responsible for the task because this depends
on his role and the way it was obtained. When it is
not relevant to specify the agent that performs the
task, a role can also be specified as the performing
entity.
Subtask. The VXEWDVN�7DVN�� 6XE7DVN� relationship
describes the task decomposition.
Subrole. The VXEUROH�5ROH�� 6XE5ROH� relationship

brings roles into a hierarchical structure. The subrole
relationship states that a role includes other roles
including the responsibility for the task that
encompass the role. When a role has subroles the
task responsibilities are added up for the role.
Responsible. The UHVSRQVLEOH�5ROH��7DVN� relationship
specifies a task for which the role is responsible.
Used_by. The XVHGBE\�2EMHFW�� $JHQW�5ROH�� 5LJKW�

relationship indicates who used which object and
what the agent or role can do with it. The agents’
rights regarding objects can be of existential nature
(&5($7(and '(6752<�, indicate ownership (2:1(5),

or indicate daily handling of objects (86(��&+$1*().

The relationships of this model form a minimal set
of relationships that exist. However, when using this
model there are also other relationships that can be
of interest. Consider for instance a relationship
involved_role that indicates which roles are involved
in a task. Such a relationship could be defined as the
roles of the agents involved in the task and all the
involved roles of the subtasks. The involved_role
relationship is not part of the ontology because it can
be defined using only the relationships of the
ontology.

Deriving Graphical Representations
EUTERPE offers several representations that are all
generated from the same data which guaranties
consistency among the different representations.
Representations include task trees, object
hierarchies, templates with detailed information

about entities such as tasks and objects, entity list
and process graphs. Kaindl (1993) discussed the
importance of availability of task analysis
documentation to clients or project members. He
suggests the use of hypertext documentation.
EUTERPE can therefore generate HTML
documentation that shows all the data including
links between entities. In order to incorporate
ethnographic data it is also possible to attach video
fragments, images or sounds to any of the entities.

Figure 1. The concepts and relations

Task Agent

Role

Event

Object

name(string)
goal(string)
start_condition(string)
stop_condition(string)
initial_state(string)
final_state(string)
duration(integer)
frequency(string)
type(enum)
user_actions(string)
system_operations(string)

name(string)
skills(string)
attitude(string)
miscellaneous(string)

name(string)
goal(string)name(string)

attribute(Name,Value)*
action(Name)*

name(string)
description(string)

Contains

Responsible

Performed_by

PlaysTriggers

Subtask

Uses

Triggers

Used_by

Subrole

Is

Performed_by

4

A NEED FOR FLEXIBLE EPRESENTATIONS
When designers using EUTERPE needed to explain
the problems they found in their analysis, they often
used to color certain nodes in task trees to indicate
problem areas. Reasons for coloring were often
closely related to attributes of entities such as tasks
and objects. Common remarks were that certain
tasks take too much time or happen too often. Other
remarks were that certain people do things that they
officially are not allowed to do or that they do thing
with objects for which they officially did not have
the appropriate rights. We found out that especially
exceptions to the "official way of working" gave
interesting information about the task world. Most
remarks were things that could be "detected" by
logic expression on our used model. This led to the
addition of analysis primitives to EUTERPE.

ANALYZING COOPERATION
The basis of EUTERPE is that the theory of GTA is
formalized into the ontology and that the ontology is
represented as a first order predicate logic. The
representation of an ontology in logic allows us to
analyze the task world in all its facets, the people
with their work and the organization they are part of.
One criticisms on task analysis has always been the
fact that it remained unclear what exactly to do with
the data, "we have the data now what?" What should
be next is an analysis of the data, finding problem
areas and designing a "New World" that relieves
these problems. The analysis that is usually done has
an informal character and is usually based on insight
on the data. However, we found that some problem
areas have a more general nature which are domain
independent.
• Problems in individual task structures. The

task structure is sub-optimal because too many
subtask needs to be done or certain tasks are too
time-consuming or have a high frequency.

• Differences between the formal and actual
task performance. In cooperative
environments, usually regulations and work
practices exist which are documented, for
instance as part of ISO9000 compliance. In
reality tasks are mostly not performed exactly as
is described on paper and that "one way" of how
the tasks are done does not exist. When persons
in a cooperative environment think differently
about what needs to be done, problems arise.

• Inefficient interaction in the organization.
Complex tasks usually have many people
involved who need to communicate and interact
for various reasons, such as knowledge about
tasks or responsibility for tasks. This can be the
cause for time-consuming tasks but also for
irritation between interacting people.

• Inconsistencies in tasks. Tasks are defined but
not performed by anyone or tasks are executed
in contradictory order.

• People are doing things they are not allowed
to do. In complex environments often people

have to do tasks for which they did not get a
official permission or they are using/changing
objects they are not allowed to change.

Of course not all of these problems can be
automatically detected. However using our model
for describing task world models many
characteristics can be detected semi-automatically
by providing the analyst with a set of analysis
primitives. Analyzing a cooperative environment can
be done when the data present in the model is
transformed into qualitative information about the
task world. EUTERPE basically has two primitives of
qualitative analysis. First of all visually in graphical
presentations. When the data has certain features,
these can lead to modifications of the graphical
representations. The second primitive is to analyze
the data on a logic level by putting some constraints
on the model. Constraints that cannot hold may
show interesting features of the task world. These
two primitives allow several ways of analyzing a
task model. We distinguish four ways: inspection,
analysis, verification and validation. In the next
sections these ways of analysis will be elaborated
and clarified with examples.

Inspection
Inspection means browsing through your data. A
task model based on the ontology is a complex
model. In projects done by designers the task models
typically consists of about 100 tasks, 20 object, 15
roles, 10 events and 10 agents. This a lot of
information that needs to be understood. Graphical
representations in general show specific aspects of
the data, for instance a tree shows the hierarchical
structure of tasks. Other useful representations
include flow graphs, interaction diagrams, templates
and hyperlinked structures. Euterpe offers several of
these representations and provides a coherent and
consistent view on the data.

Additionally a coloring mechanism can be using to
tune the graphical representations e.g., the coloring
of nodes in a tree can be used to analyze task/agent
allocation. The user can specify a condition for
coloring of a node, for instance "all tasks performed
by Chris". The user can choose from a range of
predefined conditions of specify the condition in
logic. Conditions can be arbitrarily complicated and
range from showing task/agent allocation to showing
instances of delegation of task responsibility. Figure
2 shows an example of a task tree with colored
nodes. Another possibility is browsing through the
concepts and seeing their details and relationships
for instance by following links in the HTML
representation or viewing templates.

Analysis
Whereas inspection is merely "looking at" analysis
is "finding out what is going on". Here the goal is to
gain understanding of the task world and to find the
nature and causes of problems. This can be achieved
by using several different representations like those

5

used in inspection and by using certain derived
characteristics. For instance, coloring all tasks in
which a certain role is involved may help to gain
insight in the involvement of a role in the task
structures. Euterpe has built-in characteristics that
can be checked on request but for the advanced
analyst it is also allowed to specify additional
characteristics. Some examples of predefined
characteristics are:

• agent X:
all tasks performed by agent X

• cooperative task:
all tasks where more than 3
agents are involved

• boring_task:
all tasks that are performed more
than 20 times per hour

• comlex_task:
all tasks that have more than 3
levels of sub-tasks

In DLP syntax a boring task could be defined:
boring_tasks(T) :-

gta_task <- is_instance(T),
T <- frequency(Freq, Unit),
Freq > 20,
Unit = hour.

Cooperation can be seen as a dependency or
interaction between certain tasks performed by
different agents. Using that definition it is possible
to define an expression that shows the frequency of
interaction or how tight the cooperation is, for
instance by counting the number of agents involved
in a number of tasks. Because GTA looks at an
organization of people and tasks instead of looking
at one person, tasks are explicitly related to agents,
objects and roles. All these relationships are
established when the data is entered in EUTERPE.

Verification
This kind of analysis is on a more logical level.

Verification concerns only the model as it has been
specified. Only a limited degree of verification of a
task model can be supported due to the inherently
lack of formal foundations for task models. There is
not a model to verify the task models with. However
it is possible to see if the task model satisfies certain
domain independent constraints. The task world
ontology merely defines the concepts and
relationships without any constraints. This was done
deliberately to give the analyst as much freedom as
possible to specify what they find during data
gathering. There are however constraints that we
would like to have satisfied independently of the
specify domain that is being studied. For example
we would like that for each task there is at least one
responsible role and that each task is really being
performed by an agent. These constraints can be
specified as logical predicates and can be checked
automatically. Examples are:

• unauthorized task performance:
a task that is performed by an
agent who’s role does not
encompass the responsibility for
the task.

• unperformed tasks:
a task where no performing agent
has been specified.

• unhandled event:
an event where no task is being
triggered.

• occurance of delegation:
a task that is being performed by
an agent other than one that is
responsible for the task.

• impossible task sequence:
a sequence A followed by B
followed by C and
the sequence A followed by C
followed by B

In DLP syntax delegation is expressed as:
delegation(Src, Dest) :-

Figure 2 A task tree with colored nodes

6

gta_task <- is_instance(T),
gta_role <- is_instance(Src),
gta_role <- is_instance(Dst),
Src <- responsible(T),
not(Dest <- responsible(T)),
T <- performed_by(Dest).

These constraints are similar to the characteristics
used in analysis. However, they have been defined
irrespectively to the specific study being done. They
should hold in any domain. A task model were all
constraints are obeyed may be considered "better"
than one that does not obey all the constraints. In
other words the constraints allow us to denote
classes of model which may have an order of
preference.

Validation
Validation of task models means checking if the task
models corresponds with the task world is describes.
In the process of validation one may find that certain
tasks are missing or there are more conditions that
are involved in executing a task. Often one finds that
there are exceptions that had not been found in
earlier knowledge elicitation. Consequently
validation needs to be done in cooperation with
persons from the task world and is not directly
automatable by any tool. However it is possible to
assist in the validation process for instance by
generating scenarios automatically that can be used
to confront the person from the task world. Such
generated scenarios are in fact simulations of pieces
of the task model. Generating simulations has not
been implemented in Euterpe but recent work on
early task model simulations (Bomsdorf et al., 1997]
has shown promising examples of early simulations
based on task models.

MANAGING CONFLICTS
When doing an analysis irrespectively of the kind of
analysis, problems or conflicts may arise. By
conflicts we mean situations that need to be handled
by the analyst. Examples of conflicts are
contradictory data gathered from different persons
describing the same task. In this case one of the
persons may have made a mistake or forgot
something. Another possibility is that different
persons really do the task in a different way in which
case it is very interesting to note this fact. Conflicts
do not always need to be "solved" but they certainly
require attention and should be seen as a hint for
possible interesting aspect of the task world. The
ontology we use allows inconsistencies and others
causes of conflicts to be specified because we found
in practice that it is often very important to be aware
of these conflicts. Many analysts or designers
develop models of a task world with the goal of
finding one model that captures how the task world
works. When modeling complex cooperative
environments this is almost never the case and the
analysts should not have this one model as the most
important goal.

CONCLUSIONS
EUTERPE can be a useful tool for analyzing
cooperative environments. Because it is based on the
theory of Groupware Task Analysis it has a well
founded theoretical background and it offers a
structured approach to task analysis. Furthermore, it
offers primitives to analyze the captured data in
several ways. Analysis primitives are specified
logically and can be modified or added. EUTERPE

allows cooperation analysis and enables
experimentation with analysis primitives, which is
also part of our future research.

REFERENCES
d’Ausburg B. (1998) Using Model Checking for the

Automatic Validation of User Interface Systems",
DSV-IS98, 3-5 June, Abingdon, UK.

Bomsdorf B., Swillus G. (1996) Early Prototyping
based on executable task models. In: CHI ’96
Conference Companion, Short Paper, Vancouver,
Canada, April

Chung-Man Tam R, Maulsby D. and Puerta A.
(1998) U-TEL: A Tool for Eliciting User Task
Models from Domain Experts, Proceedings of IUI
98, pp. 77-80, San Francisco, USA

Eliëns, A. (1992) DLP - A Language for Distributed
Logic Programming, John Wiley & Sons,
Chichester

Kaindl H. (1993) The Missing Link in Requirements
Engineering, ACM SIGSOFT Software
Engineering Notes, vol 18 no 2. April pp. 3039

Loucopoulos P., Karakostas V. (1995) System
Requirements Engineering, McGraw-Hill, London

Noldus, L.P.J.J. (1991) The Observer: a software
system for collection and analysis of observational
data, Behavior Research Methods Instruments &
Computers, 23, pp. 415-429. 1991.

Puerta A. (1997) A Model Based Interface
Development Environment, IEEE Software,
July/August 1997, pp. 40-47

Veer, G.C. van der, Lenting B.F. and Bergevoet
B.A.J. (1996) GTA:Groupware Task Analysis -
Modeling Complexity, Acta Psychologica 91, pp.
297-322

Veer, G.C. van der, Hoeve M. and Lenting B.F.
(1996) Modeling complex work systems - method
meets reality, In: T.R.G. Green, J.J. Canas and
C.P. Warren (eds) Cognition and the worksystem,
8th European Conference on Cognitive
Ergonomics (EACE) Inria, Le Chesnay cedex, pp.
115-120

Welie M. van, Veer G.C. van der, Eliëns A. (1998)
An Ontology for Task World Models, Proceedings
of DSV-IS98, 3-5 June, Abingdon, UK

