
Usability Properties in Dialog Models
Martijn van Welie, Gerrit C. van der Veer, Anton Eliëns

Vrije Universiteit, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, Holland
+31 20 4447788, {martijn,gerrit,eliens}@cs.vu.nl

Abstract. Usability has gained a lot of attention in the design community and it
is one of main goals of every design project. Evaluating usability is usually
done with end-users after a prototype has been built and there are not many
techniques available that allow usability evaluation during the early design
phases. Current dialog modeling techniques generally do not deal with usability
aspects, as they are often functional based models, dealing only with states and
state changes. This paper investigates how usability aspects can be incorporated
into dialog models so that usability can be evaluated during the design process
without doing usage tests. A set of measurable properties is given which
together could give an indication about the usability of the design, This way,
some usability aspects can be covered early in the design process without the
need for an executable prototype or end-users.

Keywords. Usability, Verification, Validation, Dialog Models.

1 Introduction
In every design, the dialog between the user and the systems needs to be designed.
The dialog is concerned with the structural aspects of the communication between the
user and the system. At the dialog level, we are not dealing with presentational aspects
such as layout and color usage.  Many methods and techniques to model the dialog
have been proposed but most dialog models can hardly deal with usability aspects. In
[1][8]a set of properties for dialog models is given but the focus is only on aspects
such as state reachability and interaction-paths. Although some of those properties can
be very useful to evaluate, they only cover a very small aspect of usability. Most
dialog models are state-based and do not contain information for evaluating other
usability properties.
Usability is concerned with many aspects that cannot all be covered by state based
models. For instance, the usability of a design strongly depends on the cognitive and
motor abilities of the users together with the tasks and the goals they have to achieve.
User centered design focuses on the user by involving the user heavily into the
iterative design process, thereby ensuring usability. An iterative design process can be
very useful but is essentially a trial-and-error kind of process and does not address the
underlying problem of how to ensure usability during the design process itself. Formal
dialog modeling could be very useful for evaluating usability early in the design
process without the need of some kind of prototype or end-users. This would allow a
more objective evaluation that is not highly dependent on the expertise of a usability
expert. However, if a formal dialog model is used with the purpose of early usability



evaluation, the dialog model and the properties to be checked must give a valid
indication of usability. Consequently, there needs to be relation between a framework
for usability and the dialog model. Obviously, not all aspects of usability can possibly
be evaluated using a dialog model, so it is important to understand how much early
usability evaluation is possible using dialog models.
The next sections will first sketch a framework for looking at usability and the
relationship with dialog models.  Then we will investigate what aspects of usability
can be quantified and which cannot, in relation to a dialog model. In the last sections a
new dialog modeling technique is presented that allows some usability properties,
other than concerning states, to be checked. A small example is given to show what is
possible.

1.1 Related Work
Usability evaluation can be done at several stages of design. Approaches such as
EMA[2] and ERGOVAL[10] can be applied once a prototype exists and evaluation is
done by means of real usage test. Consequently, such approaches cannot be used early
in the design process when prototypes do not exist yet.  Several techniques exist that
model the dialog part of a design and those are used very early in the process.
However, most of those techniques only allow a small set of usability properties to be
evaluated. GOMS[14] is a technique that focuses on the performance by evaluating
the structure of the dialog. It is based on counting the number of steps needed to
perform a task and the time required for each task. The properties defined by
Abowd[1] are derivable from a state based dialog model and concern state
reachability. In our opinion, this is not directly related to usability but more to the
correctness of the specification. ETAG[24] addresses consistency by using grammars
although the focus is not on determining the level of consistency. In the following
sections we also will try to define additional properties to those mentioned in the
related work so that dialog models can offer more effective possibilities for early
usability evaluation.

2 Usability during Design
User centered design mainly uses iterative design/prototyping as the main driving
force. In itself this is a very poor method and is characterized by the "trial and error"
principle. It prohibits the preservation of "design knowledge" and the same mistakes
could be made repeatedly. In real-life design projects, there are many factors that
influence the design process. Time and money are often constraints that prevent
iteration in the design process, making the evaluation of usability during the early
design stages even more important. When a project is running out of time, the last
activities in the design process such as user testing are likely to be skipped. In
practice, the skills and experiences of the designers and design guidelines are the main
sources for design knowledge. Guidelines preserve design knowledge but skill and
experience are easily lost. In [3] it is suggested that design patterns may capture some
of this design knowledge similar to patterns in Software Engineering. The idea of
capturing knowledge of good designs may be attractive but there is no agreement on
what good design is. A good design can be defined as a design that maximizes the
goals of the design within a set of given constraints. Maximizing usability may not



always be the main design goal and in practice, money and marketing strategies may
dominate the constraints which may lead to less attention to the usability aspects. In
each design project there will be conflicting requirements, a well-known fact in
requirements engineering. Therefore, it is important that the design which is produced
and that can not be evaluated as much as desired, is still as good as possible. This can
only be achieved if design knowledge is structurally incorporated into design
methodology. It is a challenge for formal methods to adequately formalize this
knowledge in a way that makes it easy for designers to use and facilitates early
usability evaluation.

3 A View on Usability
Before usability aspects are incorporated into dialog modeling, it needs to be clear
what usability is and how usability is related to the dialog part of a system. Several
authors have given definitions or categorizations of usability alongside guidelines,
heuristics, principles and criteria [4,8,21,22]. All the different definitions and
principles make usability a confusing concept when actually designing a new system.
Usually authors spent a lot of effort trying to find out what is the "best" set of
principles or to define a "complete set of heuristics". Although these "aids" are useful,
it remains unclear how they are related and they lack a theoretical underpinning. In
[26] we introduced a model that gives more structure to the concept of usability. It is a
theoretical view on usability that integrates several well-known definitions of usability
and puts them into a structure. Although it is a theoretical model, it can also be of
practical value when designers have to deal with actual usability problems. We will
briefly summarize the structure of the model since the model helps to understand the
possibilities and limitations of usability evaluation.
Figure 1 shows the layered model of usability that helps understanding the various
aids. On the highest level, the ISO definition of usability is given split up in three
aspects: efficiency, effectiveness and satisfaction.  This level is a rather abstract way
of looking at usability and is not directly applicable in practice. However, it does give
three pillars for looking at usability that are based on a well-formed theory[4]. The
next level contains a number of usage indicators which are indicators of the usability
level that can actually be observed in practice when users are at work. Each of these
indicators contributes to the abstract aspects of the higher level. For instance, a low
error-rate contributes to a better effectiveness and good performance speed indicates
good efficiency.
One level lower is the level of means. Means cannot be observed in user tests and are
not goals by themselves whereas indicators are observable goals. The means are used
in "heuristics" for improving one or more of the usage indicators and are consequently
not goals by themselves. For instance, consistency may have a positive effect on
learnability and warnings may reduce errors. On the other hand, there may be good
reasons for not complying completely with a platform style.



Effectiveness Satisfaction

Learnability Satisfaction

MemorabilityPerformance Speed

Errors/Safety

Consistency Feedback

Warnings

Shortcuts
Undo

Task Conformance

EfficiencyUsability

Usage Indicators

Means

User Model Task ModelDesign KnowledgeKnowledge

Adaptability

 has an impact on
 is a source for improving

Figure 1 A layered view of usability
Each means can have a positive or negative effect on some of the indicators. The
means need to be "used with care" and a designer should take care not to apply them
automatically. The best usability results from an optimal use of the means where each
means is at a certain "level", somewhere between "none" and "completely/
everywhere/all the time".  It is up to the designer to find those optimal levels for each
means. In order to do that the designer has to use the three knowledge domains
(humans, design, and task) to determine the appropriate levels. For example, when
design knowledge is applied by using guidelines, it is clear that the guidelines should
embody the knowledge of how changes in use of the means affect the usage indicators.
The means and usage indicators of Figure 1 are examples and stem from
literature[8,17,22]. All of the guidelines and heuristics can give suggestions for other
useful means and usage indicators. More research is needed to determine which means
are most effective for improving usability. Knowing the impact of a means on usage
indicators could then lead to more effective usage of the means.

4 Dialog Modeling and Verification
If a dialog model is to be verified on usability, the usage indicators in principle cannot
be used since their evaluation is not possible yet, as there is no prototype. However,
model based approaches can generate a prototype from a collection of models that
among other things describe the dialog. In addition, evaluating usability with
prototypes is a form of model validation and not model verification. A simulation
based on the dialog model can give data about some of the usage indicators but there
is not much foundation for conclusions; it remains unclear how aspects such as
learnability or memorizability can be measured during simulations. The tool



GLEAN[13] is an example of such a simulator but its power remains restricted to the
capabilities of GOMS, hence a strong focus on performance times.
The means are therefore more suited for usability evaluating of dialog models. The
means are not directly in the right “form” because they are often in an intangible form
and need to be translated into usability properties. For instance, if consistency helps
improving (among others) learnability, then a property could be that “confirmation
tasks” are always handled in the same way.  Several of such properties can be given
for each means. The properties should be measurable, either relatively or absolutely.
In addition, such properties should be restricted to properties that are related to the
dialog level and not the presentation level. So, “consistent use of colors for buttons” is
not an appropriate usability property for usability evaluation of dialog models.
Abowd[1] presents some properties for dialog models but they are mainly concerned
with state reachability and they consequently do not have a strong relationship with
usability.
Although the usability properties should be measurable, their values typically only
have a meaning in the context of that design. Some properties may also have a general
meaning like a property, “Percentage of Undoable functions” should in any design be
larger than, say 50%. The values of all checked properties should be discussed within
the group of stakeholders of the design. To determine what a “good” value for a
property is, designers need to look at the three knowledge domains that are the basis
for the means. For instance, a task model is a good source of knowledge in order to
determine task conformance and knowledge of the cognitive processes of humans can
be used to evaluate memory load or the need for feedback. As can be seen from
Figure 1 each of the knowledge domains discussed in section 3 is important for
usability. Case specific attributes such as giving appropriate warnings and task
conformance cannot be checked without a formal task model. Other human aspects
concerning efficiency are easier to check and can even be measured using current state
based models. Effectiveness and satisfaction are harder to measure than efficiency and
more information concerning application functionality or the specific case is needed.

5 Dialog Models and Validation
Formally verifying a dialog model alone takes a design out of its context. The design
is verified without looking at the tasks users need to do, conventions and styles that
are posing constraints, or specific aspects of the intended user group. Validation of a
dialog includes the context of the design and opens the possibility to look at other
important usability aspects, especially concerning the effectiveness and satisfaction of
a design.

5.1 Validating against User Models
Checking a dialog against a user model means looking at the dialog aspects where
cognitive and motor skills and limitations are involved. Some aspects of user
modeling are easier to deal with than other aspects. Considerable research into user
modeling has been done to capture relevant aspects of user behavior when interacting
with s system. PUMs[27] is a technique that uses both a user model and a system
model to evaluate usability. PUMs does not clearly define any general usability
properties and the actual formal proof of properties remains difficult[5].



5.2 Validating against Design Models
Design models only sparsely exist. Source for design knowledge can be found in
guidelines, style definitions, standards and design heuristics. For formal evaluation
purposes these sources are usually not formal enough and can only be used by
humans, as they require a lot of interpretation. However, some attempts have been
made to formalize design knowledge and "connect" it to dialog models, see
EXPOSE[18] and DIADES-II[7]. The knowledge is usually a mix of dialog and
presentation aspects with a strong focus on presentation aspects. Such tools can be
very useful in assisting designers very early in the design process. Some tools such as
ERGOVAL[10] do an automatic evaluation of a prototype using ergonomic rules. The
disadvantages are that a limited amount of information can be extracted out of an
executable and the necessity of an executable.

5.3 Validating against Task Models
Verifying a dialog model against a task model is not straightforward. First of all
because of the diversity of task models it is not guaranteed that they model the same
thing. An important issue in discussions about task models is the question what exactly
they describe. Task models for model based systems and other methods like
GOMS[14] and ConcurTaskTrees[19] are prescriptive task models. Other task models
such as TKS[12] and GTA[25] are descriptive and focus on modeling the user's task
knowledge. A consequence of this distinction is that the meaning of task and object is
different. In a system's task model the objects are all part of the system which is not
necessarily true for a user task model. Also with a system's task model usually the
focus is on one user interacting with the system instead of taking into account other
users and stake holders, other roles and the environment in which a user may interact
with a system.
It is clear that a task model's most obvious contribution is in checking task
conformance although this may not be easy to do. However, for other usability means
the task model can also be a valuable source. For instance, when determining when
and how often warnings should be given by the system the task model should have
information about critical tasks and the frequency of those tasks. In order to make a
dialog more usable for both novices advanced users, information about the tasks and
the different types of users is needed from the task model. Unfortunately, not all task-
modeling methods describe all those aspects of the task world[25].
Other approaches such as EMA[2] and USINE[15] use a combination of a task model
or interface models and actual usage logs. The actual usage logs are analyzed against
the task model. The outcome of the analysis is an annotated user log that still needs to
be interpreted by an expert. The properties that are found are mainly related to
deviations of user actions compared to the prescriptive task model. Such an evaluation
is still highly subjective and the method does not provide direct clues on causes of
usability problems nor on possible improvements. That has to be done by the expert.
A requirement for these approaches is a prototype where logging code has been
added. The models used are models that contain both dialog and presentational
aspects. When analyzing the results it is difficult to assess whether causes of the
deviations are related to the presentation aspects, to the dialog, or to the task model.



6 Towards Usability Properties for Dialog Models
In the remainder of the paper, we will focus on automatic usability evaluation based
on models that describe the dialog solely and without doing any user testing. This will
allow very early evaluation by constantly evaluating properties of dialog models that
are explicitly related to usability. It would not require any software prototype and
designers could make a clear distinction between dialog and presentation aspects.
Before we can define any usability properties for dialog models, we need to determine
what reasonable usability measures for dialog models are. As said before, usability
measures need to be derived from the means of Figure 1 for improving usability. A
usability measure says something about the usage of a means by evaluating properties
that express the means. In order to define such usability properties we have to look
closer at the possible usability measures. There are several restrictions that need to be
made. First of all, the usability measures need to concern the dialog only and secondly
the assumptions about the behavior of the dialog components need to be restricted in
order to keep evaluation as simple as possible. Some approaches such as [11] give a
formal definition of the behavior of the components of the dialog. Such a definition
would need to describe the complete windowing toolkit that is used and the additional
project specific controls that were needed. Using that formal description, more claims
can be made than without this knowledge. The connection of components to the
system is however important because the basic application functionality is very
relevant for usability on the dialog level. A formal description of the application
functionality is not considered at the moment and only some properties of functions
that are directly relevant for usability evaluation are included.
Since we are interested in expanding the use of dialog modeling for usability
evaluation, we need to look further than measures that deal with interaction paths and
measures such as reachability of states. In order to define properties for dialog models,
it needs to be known which basic concepts should be present in a dialog model.

6.1 Some usability measures for the Dialog
This section will give a list of possible measures. Each measure is informally
explained and discussed in the context of a dialog model. The measures are mostly
taken from literature on usability, guidelines and modeling techniques together with
some new measures. The aim was to come up with a comprehensive list of dialog
related usability measures.

Interface feedback
Different functions require several kinds of feedback in response to user actions.
Actually, the term feedback is not very good because it implies that all the interactions
are initiated by a user, which is not true. A better term would be interface actions
indicating that the interface acts just as well as a user, sometimes in reaction to user
actions but also on its own initiative. Especially in a windowing environment, the
system often initiates interaction. Consider an email program that pops up a window
notifying the user a new email has arrived in which case the system needs to give
feedback because of events that have occurred. For some cases of interaction, it could
be stated what kind of feedback is needed.



•  A calculation task requires feedback that the system is busy and the user
needs to be informed of its progress.

•  Functions that cannot be undone should warn the user that the result cannot
be undone.

•  The goal of the function is to display information.
•  A function changes the system state with respect to possible next user

actions.
•  The system needs input so it has to indicate what user actions are needed.
•  The system is in a complex activity with time characteristics that relate to

temporal aspects of user input enabling/disabling
In relation to a dialog model, it is clear that it has to be identifiable when feedback or
system actions occur, preferably in relation to the function type or the task type.

Forgiving the user
A user should not be punished for unintended actions, for instance when it is not
directly clear to the user what a function does. Basically this means that the
consequences can be undone either directly using an undo function or indirectly by
going through a sequence of actions. Undo could mean that the user can go back to a
previous interface state but also that the user goes back to the previous application
state. Being able to go back to the previous interface state does not say too much
about "forgiving the user" because the application state may not have been undone.
Offering the possibility to undo complete actions may strongly impact learnability and
error rate as well as the satisfaction of the user. In terms of the dialog model, it has to
be known if a function is (or will be) undoable and if the previous interface state can
be reached. In addition, it needs to be known if the function has side-effects that are
not undone if the function is undone.

Consistency and platform conformability
Being consistent within one application and being consistent with a platform style also
helps improves learnability and the error rate. It makes a system more predictable for
the user. Consistency could be found in many aspects of a dialog:
•  A message window always contains an OK button.
•  Every confirmation window always contains an OK and CANCEL button
•  Functions on the same object are selected in the same way.
Each platform has its own style definitions, the Apple, Windows, and Motif standards
explicitly define their styles. Some aspects of a style are shared between styles and
others are style specific. Concerning the dialog one could verify several properties
such as:
•  The number of levels of submenus. In the Apple guidelines it is stated that there

should not be more than one level of submenu’s
•  Closing a document window should ask for saving when needed.



•  Menu entries that require additional input before execution should have (…)
added to the text.

In order to find out if similar tasks are handled the same way, it has to be possible to
identify small structured sequences in the dialog model. For other aspects the
interactors would need to be of a certain widget type, allowing platform rules to be
checked.

Total number of enabled visual functions
There is a clear difference between the number of functions that are enabled at one
point and the functions that have an access path of length one. In a complex
application, the number of active functions can be quite large while the number of
directly accessible functions should not be very high, perhaps maximally 50. For
example, imagine Word with all the toolbars active. This obviously violates this rule
and is bad for usability. Reducing the number of directly accessible functions reduces
the cognitive load of the user. When the user has to compare things the number 7 plus
or minus 2 is a good guideline [6] but for localizing tasks where the user knows what
to look for this number can be much higher, assuming the search space is in some way
structured and the user knows or understands the structure[23]. The question remains
if the concept of having many toolbars is bad per se or that users are just not prevented
from abusing them. In a WIMP interface the fact that the button is visible is the only
guarantee that the button can be selected so visibility is closely related to enabling or
disabling of functions.

Interaction Path Length
Each function has a path of interactions before it is selected. The path can be a number
of keypresses or mouse movement and mouseclicks. Methods such as GOMS have
already tried to make prediction about the user performance based on the path length.
The path length is a good indicator for the speed of performance  (efficiency) and is
also of interest in determining how usable the system can be for novices and experts.
If shortcuts are added more paths of different length are available.

Modalness of windows
Modal windows are windows that get all device inputs so that no other windows get
input. The modal window is then the active window and the user cannot change focus
to another window that belongs to the same application. When a task has parallel
subtasks, none of the subtasks is allowed to be modal since that would violate the
parallelism. When a window is modal only the contained widgets are enabled and the
rest is disabled. Modal non-movable windows should probably always be avoided
since they even prevent the user from looking at possibly relevant information
elsewhere on the screen. Modal windows are often the result of platform limitations on
multitasking capabilities or because of limitations in the toolkit that is being used.
They force the user into a certain state that does not allow them to do anything else
and should therefore be used with caution. Although non-modal dialog windows
increase the cognitive load of the user, it depends on the task whether this is desired or
not. In a dialog model modalness can be detected when one component or function
disables all components that are not part of it.



Preventing errors
In certain tasks it may be good to warn the user for the consequences. Typically, these
are tasks that cannot be undone by the application such as tasks or actions towards the
network or any other external process. For instance, opening a valve in an oil refinery
is not simply undone by closing the value and the operator has to use other means to
deal with the resulting situation.  When the task can be undone, no warning is
necessary in general. When dealing with critical task a warning is also good to make
the user more aware of his decision. In such a task undoing the function may take to
much time and lead to hazardous situations. When a warning is needed depends on the
task of the user, the type of user and the system function.

Task type classifications and interface feedback
Both tasks done by the user and tasks done by the system can be classified. Paterno
gives a classification of task types in his TLIM[19] method. For instance a calculating
task may involve progress feedback. Similar a formfilling task may involve help on
the meaning of the form fields. Application tasks types include report, compare, give
information, locate, group of data, control, store/retrieve etc. User task types could be
to select, edit, control (confirm), ask for help, navigate etc.

Adaptability of function access
A simplistic view on an application would regard an application as a collection of
functions that can be used. Interaction styles make these functions available. However,
it may often be wise to provide more than one access path to the function so that for
instance advanced users can bypass a menu using a shortcut. Even better would be to
have functionality to change the contents of toolbars so that the user can adapt his
access paths.

6.2 Extracting the concepts
A dialog model that allows usability to be evaluated needs to be based on a set of
concepts that enable the usability to be evaluated. Basically every formal method has a
set of concepts that it uses and those concepts should be exactly what is needed in
terms of the purpose of the modeling technique. The usability measures that were
described show that more concepts than bare states and state changes are needed. The
following aspects seem important for usability evaluating of a dialog model:

- Task/Function Typing
- Interaction paths
- Feedback
- Enabling and disabling of interaction objects
- Visibility of interaction objects
- The type of an interaction object
- Function undo-ability and side-effects

Once a dialog model can describe these aspects, we can define usability properties
concerning those concepts.



7 DIMUSE
In this section a first sketch of a new dialog modeling method is given that allows
some usability properties to be evaluated. DIMUSE (DIalog Modeling for USability
Evaluation) is based the concept of interactors[9] and is extended to be able to deal
with usability evaluation.  The purpose of this dialog modeling technique is to allow
usability evaluation so that design choices can be evaluated by their impact on
usability properties. The concepts and relationships of DIMUSE were based on the list
of possible usability measures that were described in the previous section.

7.1 Basic Concepts
The basic concepts of DIMUSE are interactors, functions, events, and actions. The
dialog consists of a structure of interactors on which the user can perform actions. In
the end, the actions lead to the execution of a function. In return a function can also
perform actions and thereby give feedback to the user. Both functions and interactors
are typed. An event is given by the system but is not directly triggered by an action of
the user.  Essential for the evaluation is that the actions are specified in sufficient
detail to determine the usability properties. In addition some extra information about
the functions is also needed such as the possibility to undo this function. Sometimes
the possibility to undo a function is a design choice but sometimes it may be a given
constraint; sending an email just cannot be undone. In other cases it may be undoable
but the side effects are not, consider closing/opening a valve in an oil refinery; closing
the valve does not undo the fact that fluid has passed through.

7.2 An Example
In order to give an idea of what could be evaluated using DIMUSE a small example
will be given. Figure 2 shows a fraction of a dialog model that describes an email
program similar to most commonly found email programs. There is a list of all emails
and an email can be viewed by clicking on a list item, which causes a new window to
appear: the email viewer. The email viewer has several buttons which lead to the
selection of a function.
Interactors can handle several actions such as activation and deactivation. One of the
parameters of actions is the input device action that triggered the activation and
deactivation. In other cases it can be a condition of the application state or interface
state. Both the user and the application can be the initiator of interface changes. User
initiated changes are actions starting in interactors and application initiated changes
start in events or functions.
Figure 2 is a sketch of how a graphical representation could look like. At this point,
we are still in the process of determining the exact definitions of the concepts and
attributes that are needed to enable usability evaluation. After that, a formal definition
of the modeling language and the usability properties can be given.



New
email

New email
notification

Ok Button

Cancel Button

activate

deactivate(click(mouse,left,))

deactivate(click(mouse,left,))

Email Listbox

Email Viewer

activate(select(Item))

Forward Button

Delete Button

Reply Button

Next Message Button

Prev Message Button

activate(click(mouse,left,))

Delete Message

deactivate(click(mouse,left,))

action(remove(selected_item))

action(show(next_item|prev_item))

New Email Composer

activate(click(mouse,left,))

Send Button

Send Message

committed_select(click(mouse,left,))

Progress WindowError Window

Ok Button

deactivate(cond(Sending==done))

selects(click(mouse,left,))

activate(keypress(ctrl,f))

undoable(yes)
side-effect(no)

undoable(no)
side-effect(yes)

Move Message
undoable(yes)
side-effect(no)

activate(cond(Error==true) activate

deactivate

contains

function

interactor

event

action

Figure 2 Part of the dialog of an email progam

Using Figure 2 we can define how the properties of section 6.1 can be detected. For
instance, interaction path can be determined by counting the number of action arrows
from one interactor to a function. By inspecting activations of interactors, following
actions selecting a function we can give meaning to feedback. Re-use of interactors in
multiple locations of the dialog together with the containment structure of interactors,
can be used to determine consistency properties. Because the dialog model also
contains basic information about functions, it is also possible to detect if warnings are
given for functions that have side effects.

7.3 Static Property Evaluation
One way of evaluating this dialog model is by determining static properties. The
model is taken "as-is" and the value of a property is checked. Checking static
properties says something about the "value" of the means as described in section 3. It
is therefore not valid to make assumptions about the usage indicators, and
consequently usability itself. However, such properties can be useful to compare
design variants. For most means, it is intuitively clear that their value should be within
certain ranges. For instance, most designers would agree that it is better to have the
possibility to undo "some" actions than no such possibility. Properties can also
concern structures within the dialog model. For instance, TAG[20] addresses
consistency by using feature grammars; tasks that have a similar structure only differ
in features and the user only has to learn the structure once to use all of the similar



tasks.    From guidelines and experiences from designers, it should be possible to give
some "on average" values for most properties. The properties from [1] and other
evaluations of state models only evaluate static properties. Typically these are
properties about state reachability which is often supported by some model checking
tools. The difficulty here is that in order to give a valid indication of the usability of
the design, state-reachability does not give much justification. Using the example
some other properties can be checked as well, see Table 1. The properties that are
given are of general nature, i.e. they could be applied to any dialog model. There may
also be non-general properties that can be useful for usability evaluation but those
need to be determined per project.

Maximum number of items in a menu
Maximum number of interactors visible to the user
Percentage of undo-able functions
Percentage of warnings given for not undo-able functions
The number of undo-able function with side-effects
The number of functions without any feedback
The number of different paths to one function
The minimum path length to a function
The number of functions reachable without using the mouse
Number of possible deadlocks
The number of unreachable functions

Table 1 Examples of static usability properties

It is clear that it is possible to evaluate more usability properties than only those
concerning state reachability. The examples given are still rather simple but they give
an indication of what is possible. None of the examples has taken advantage of
interactor typing or function typing. Especially using interactor typing, some of the
design guidelines concerning for instance menu structuring could be defined as
properties.

7.4 Dynamic Property Evaluation
Although it seems to be problematic to make predictions about the usability of a
dialog, it is possible to get some data about more dynamic properties related to usage
indicators. One way is by making some basic assumptions about users' behavior.
Essentially this is what GOMS[14] was based on; the assumption that tasks take an
average amount of time depending on the type of task. Using that assumption, a
prediction about the speed of performance could be made. Again the absolute value
was always under discussion but at least designs could be compared using this
assumption and the most favorable could be chosen. Other assumptions could concern
the differences in behavior of novices and expert users. A novice uses less shortcuts
than an expert and for each a ratio could be defined between shortcut use and menu
usage. Using that assumption one can calculate the expected number of interaction



steps needed to perform and action and consequently the performance gain. Going
even further one could make assumptions about the chances that a user selects the
wrong menu or button. Consequently, one could calculate how often one would select
a function that cannot be undone. For those kind of functions extra warnings could be
useful.

Estimated path-length for an novice/advanced user
Estimated time to complete a task
Estimated number of errors that are not undo-able
Estimated memory load

Table 2 Examples of dynamic properties

However, assumptions underlying dynamic properties must be approached with
caution. Such assumptions must be validated empirically before simulations are
possible. Ideally, one would like to have a simulator that can be used to evaluate
dialog models on a large set of properties both static and dynamic. However at this
point it is too early to construct such a simulator and as long as there is not enough
information about human behavior to make valid assumptions for a simulator, there
cannot be a valid simulator.

8 Discussion
The proposed model is essentially an extension to the existing dialog models. It allows
somewhat more verification than plain state based models although it still
questionable how good the properties are as an indicator of usability. Usability has
many aspects and if we only look at the dialog level we certainly do not cover all
aspects of usability. At the presentation level there are also a lot of details that can be
checked and even some tools have been produced[16]. Especially a style definition
can help in checking the platform style conformance which is an important aspect of
usability when it comes to aspects such as predictability and learning time. Besides the
fact that presentation contributes a lot to usability, dialog and presentation are not
completely independent. Consider a dialog describing is a menubar with 8 menu's in a
window but the font size is large and it is used on a handheld PC with a resolution of
320x200 pixels so that only the first 5 menus are visible. In that case, there is no
problem that may be detected on the dialog level or on the presentation level but
together there is a problem.
For all of the static properties it holds, that their absolute value does not give a valid
usability indication. Interpretation would become easier if we would know more about
their values because of lessons learnt in practice. Such knowledge could be captured
in heuristics that would help interpret static properties. Another possibility is to relate
the static property to other models such as a user or a task model. How to do this is
unclear and especially when relating to for instance descriptive task models.
Modeling the dialog remains a very time consuming and nontrivial task but if the
resulting dialog model can be used for usability evaluation, the usability of the final
outcome is definitely improved and the development time could be shortened, making
it worth to engage in the modeling activity.



9 Conclusions
This paper has discussed the possibilities for early usability evaluation of dialog
models without the need for prototypes. Using a framework of usability, we have
argued that it is possible to do early usability evaluation by determining usability
properties in dialog models. Although these properties can be objectively determined,
there is still little ground for valid conclusions since their values need to be interpreted
in their context. Consequently, the usability properties are more valuable when
comparing alternative dialog models than for determining the absolute level of
usability. In order to determine the usability properties, a suitable dialog modeling
technique is needed since none of the existing techniques fully allow the properties to
be determined. We have outlined such a new modeling technique which we will
develop further in the near future.

References
1. Abowd, G. D., Wan, H. M., and Monk, A. F. (1995), A Formal Technique for

Automated Dialogue Development, DIS '95,  Ann Arbor MI.
2. Balbo, S. (1994), EMA: Automatic Analysis Mechanism for the Ergonomic

Evaluation of User Interfaces,  CSIRO Technical report 96/44.
3. Bayle, E. (1998), Putting it All Together: Towards a Pattern Language for

Interaction Design, SIGCHI Bulletin, vol 30, no. 1, pp.17-24.
4. Bevan, N. (1994), Guidance on Usability, ISO 9241-11 Ergonomic Requirements

for Office Work With VDTs..
5. Butterworth, R., Blandford, A., and Duke, D. (1998), The Role of Formal Proof in

Modeling Interactive Behavior, DSV-IS,  Abingdon, UK, Springer-Verlag.
6. Card, S.K., Moran, T.P. and Newell, A. (1983), The Psychology of Human-

Computer Interaction, Lawrence Erlbaum Ass, Hillsdale.
7. Dilli, I. and Hoffmann, H. J. (1994), DIADES-II, a multi-agent user interface

design approach with an integrated assesment component, CHI'94 HCI
Bibliography, SIG on Tools for Working with Guidelines.

8. Dix, A., Abowd, G., Beale, R. and Finlay, J. (1998),  Human-Computer
Interaction, Prentice Hall Europe,  1998

9. Duke, D., Faconti, F., Harrison, M. D., and Paternó, F. (1994), Unifying Views of
Interactors, Proceedings of the Workshop on Advanced Visual Interfaces,  Bari,
ACM Press.

10. Farenc, C., Palanque, P., and Vanderdonckt, J. (1995), User Interface Evaluation:
is it still usable ?, Proceedings of 6th International Conference on Human-
Computer Interaction HCI International'95,  Yokohama, Elsevier Science,
Amsterdam.

11. Hussey, Andrew and Carrington, David (1998), Which Widgets? Deriving
Implementations from User-Interface Specifications, DSV-IS,  Abingdon, UK,
Springer Verlag.



12. Johnson, P., Johnson, H., Waddington, R. and Shouls, A. (1988), Task-Related
Knowledge Structures: Analysis, Modeling and Application,  in: Jones, D. M. and
Winder, R., People and Computers IV pp. 35-62, University Press, Cambridge.

13. Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A. (1995), GLEAN: A
Computer-Based Tool for Rapid GOMS Model Usability Evaluation of User
Interface Designs, Proceedings of UIST '95,  Pittsburgh, PA, ACM Press.

14. Kieras, D. and Polson, P.G. (1985), An approach to the formal analysis of user
complexity, International Journal of Man-Machine Studies, vol 22, no. 365-394.

15. Lecerof, A. and Paterno, F. (1998), Automatic Support for Usability Evaluation,
IEEE Transactions on Software Engineering, vol 24, no. 10, pp.863-888.

16. Mahajan, R. and Shneiderman, B. (1995), A Familiy of User Interface Consistency
Checking Tools,  CS-TR-3472.

17. Nielsen, J. (1993),  Usability Engineering, Academic Press, London, 1993
18. P. Gorny (1995), EXPOSE, HCI-Counseling for User Interface Design, Human

Computer Interaction - Interact '95,  Lillehammer, Norway, Chapman & Hall.
19. Paterno, F. D., Mancini, C., and Meniconi, S. (1997), ConcurTaskTrees: A

Diagrammatic Notation for Specifying Task Models, Proceedings of Interact '97,
Sydney, Chapman & Hall.

20. Payne, S.J. and Green, T.R.G. (1989), Task-Action Grammar: the model and its
developments,  in: Diaper, D., Task Analysis for Human-Computer Interaction ,
Ellis Horwood, Cambridge MA.

21. Scapin, D.L. and Bastien, J.M.C. (1997), Ergonomic criteria for evaluating the
ergonomic quality of interactive systems, Behaviour & Information Technology,
vol 16, no. 4/5, pp.220-231.

22. Shneiderman, B. (1998),  Designing the User Interface, Addison-Wesley
Publishing Company, USA, 1998

23. Smith and Mosier (1986),  Guidelines for Designing User Interface Software,
MITRE,  1986

24. Tauber, M. J. (1990), ETAG: Extended Task Action Grammar - a language for the
description of the user's task language, Proceedings of INTERACT '90,
Amsterdam, Elsevier, Amsterdam.

25. van Welie, M., van der Veer, G. C., and Eliëns, A. (1998), An Ontology for Task
World Models, Proceedings of DSV-IS98,  Abingdon UK, Springer-Verlag, Wien.

26. van Welie, M., van der Veer, G. C., and Eliëns, A. (1999), Breaking down
Usability, Proceedings of Interact '99,  Edinburgh, Scotland.

27. Young, R. M., Green, T. R. G., and Simon, T. (1989), Programmable user models
for predictive evaluation of interface designs, CHI '89 Conference Proceedings:
Human factors in Computings Systems,   ACM Press.


	Introduction
	Related Work

	Usability during Design
	A View on Usability
	Dialog Modeling and Verification
	Dialog Models and Validation
	Validating against User Models
	Validating against Design Models
	Validating against Task Models

	Towards Usability Properties for Dialog Models
	Some usability measures for the Dialog
	Interface feedback
	Forgiving the user
	Consistency and platform conformability
	Total number of enabled visual functions
	Interaction Path Length
	Modalness of windows
	Preventing errors
	Task type classifications and interface feedback
	Adaptability of function access

	Extracting the concepts

	DIMUSE
	Basic Concepts
	An Example
	Static Property Evaluation
	Dynamic Property Evaluation

	Discussion
	Conclusions
	References

