
An Ontology for Task World Models
Martijn van Welie, Gerrit C. van der Veer, Anton Eliëns

Vrije Universiteit, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, Holland
+31 20 4447788, {martijn,gerrit,eliens}@cs.vu.nl

Abstract. Many different task modeling methods exist. In this paper, we
discuss 1) ingredients common to most task models, 2) how task modeling
relates to the design of user interfaces, and 3) our proposed ontology for task
analysis. We then show our task analysis tool that is based on the ontology. It
is our belief that task models should be based on an ontology that describes the
relevant concepts and the relationships between them, independently of any
used graphical representations. Such an ontology helps to understand the
different task modeling methods and it can also be operationalized for use in
tools.

Keywords. Groupware Task Analysis (GTA), task models, task analysis,
ontologies, user interface design (UID), CSCW.

1 Introduction
It has been generally accepted that task analysis may substantially contribute to the
design of usable products because it focuses on the end user. Task analysis
investigates users' characteristics and the task world of which they are a part. The
information should be recorded in a task model that captures relevant aspects of the
users and their task world. The resulting model should help designers in their process
of designing a new product.

What is and is not relevant for the design process is determined by two factors: by
what the analyst wants to record and by the task modeling method that is used. Each
modeling method has certain defined concepts and relationships that are used to
record information about the users and their task world. The concepts (e.g. tasks,
roles, etc.) often come from the field of psychology and are clearly defined, but the
relationships between concepts are usually only roughly sketched, leading to
confusion when performing the actual task analysis.

Although specific task models differ, they have many things in common (e.g. task
decomposition and task flow). Almost all task modeling methods also use graphical
representations to show the information of the model. It is our belief that task models
should be based on an ontology that describes the relevant concepts and the
relationships between them, independently of any used graphical representations. An
ontology can be defined as a view on a "world" that describes the nature and relations
of it. In this case the task world of users is being described. In order to be useful in
task analysis such an ontology should be rich enough to accommodate the extraction

of the information needed to generate all the commonly used visual representations,
e.g. task trees and flow diagrams. Different graphical representations would then show
certain aspects of the ontology depending on the purpose of the view.

In this paper we explore the common ingredients of task models, and then introduce
our ontology that makes all concepts and their relationships explicit. The ontology is
the result of our attempt to clarify the concepts and relationships of our conceptual
framework Groupware Task Analysis (GTA)[14]. We also provide an example of a
tool based on this ontology. We believe that the use of this ontology could improve
the results of task analysis firstly because it can be used as a reference model and
secondly because it helps to structure the activity of task analysis when the used tools
are based on the ontology.

2 Ingredients of task models
Task models are usually filled with several ingredients that are then related in some
way. Some ingredients are less common than others, as the ideas about them have not
yet stabilized; for instance, with the recent developments in CSCW systems and agent
technology, modeling group processes has become important, although it is not yet
clear how this should be done. This section will discuss common ingredients .

2.1 Task Decomposition
Task Decomposition is the most common ingredient of task models. It results in the
classical task tree usually enhanced with constructors that indicate time relationships
between tasks. This is probably the oldest ingredient and has a strong psychological
basis; humans think in a structured way about their activities, which can be captured in
a task decomposition[11].

Tasks and Goals. A common definition for a task is "an activity performed to reach a
certain goal." However, in practice the relationship between tasks and goals is not
always so clear. Some methods presume a 1-to-1 mapping between tasks and goals;
for instance a Task Knowledge Structure (TKS[3,5]) contains a goal substructure
(which would be called a task substructure by others’ methods). Other models, such as
GTA[14] and Méthode Analytique de Description (MAD[10]), allow a goal to be
reached in several ways. In these models, the goal of a task is a specific state that is
reached after successful execution of the task. In complex task trees based on real life
situations, tasks near the leaves in a tree are usually connected with individual goals,
and tasks represented by high level nodes are often closely tied with organizational
goals[16]. When analyzing the tasks of an individual this is less apparent than when
analyzing tasks on an organizational level. When modeling complex situations where
the organization is of great relevance, it is important to be aware of the difference
between individual and organizational goals and the ways they are related.

2.2 Task Flow Specification
Another common feature of most task models is Task Flow, which indicates the order
in which tasks are executed. Two forms of flow models can be distinguished:

(1) workflow representations, with time on one axis, and

(2) task trees enhanced with the "classic" constructors that give a kind of time
structure (although mixing time and task decomposition).

Theoretically they are equally powerful to express any kind of task flow. However, the
second type of flow model suffers from the fact that usually many constructors are
needed and extra tasks need to be added. For example, in figure 1, two representations
are used. The first one is a task flow representation with time on the x-axis. The
second is a task decomposition with constructors that represents the same task flow as
the first representation. Because constructors scope over all subtasks, the second
representation needs an extra task "Go there" which may not be desired. In Paterno’s
"ConcurTaskTrees"[9] these types of tasks are called "abstract tasks." The important
point here is that for both representations the specified task flow is basically the same
but the visual representation does not always allow specification of the task structure
as desired. Since both representations can be useful there is a need for an underlying
model that allows both.

2.3 Object Modeling
Object Modeling is an addition to task analysis that comes close to the data structure
modeling of the final design and implementation. The purpose is to say something
about the objects, as they are physically present in the task world or mentally present
in the user’s mind. Not every object may be directly included in the new design but in
the case of models for automated user interface (UI) generation there is usually a very
strong link between objects and UI widgets, such as buttons or menus.

The question remains how much object modeling should be in task models. Extensive
data modeling does not appear to directly help in improving the usability of the
product. It also depends heavily on the purpose of the task model; models used as a
basis for automatic UI generation have different requirements than models used for
evaluation. For example, in GTA only the structure of the objects and the tasks they
are used in are recorded. Other models such as ConcurTaskTrees[9] and TKS[3,5]
also include actions that are performed on the object.

Information passing. The most important purpose of a task is that it "changes"
something, otherwise the task has no reason for existence. By change we mean any
sort of change, including adding information (changing an unknown to a known).

Fig. 1. Going to the cinema

Call FriendCall Friend

Take MetroTake Metro

WalkWalk Buy TicketBuy Ticket Enter CinemaEnter Cinema

See MovieSee Movie

Go thereGo there Take MetroTake Metro

Buy TicketBuy Ticket

WalkWalk

Enter CinemaEnter Cinema

OR NEXT
NEXT

SEQ

OR

1

2
Call FriendCall Friend

See MovieSee Movie

Some task analysis methods such as ConcurTaskTrees[9] describe this with task input
and task output objects. The output of one task is given as input to the next task, thus
passing information.

Another way to describe changes is to specify the initial and final states in terms of
object attribute values. In this way the information passing is indirectly achieved
through changes in object attributes. There is no fundamental difference since the list
of input and output objects can be generated from the task attributes. However, it is
possible that the changes are not explicitly recorded, such as in the mental processes
involved in a human’s decision. In models that use object actions, changes are usually
defined in the actions instead of the task states.

2.4 Recording of Concept Characteristics
Another common part of most task analysis models is the recording of relevant
characteristic attributes of the concepts. Often mentioned attributes of tasks are pre-
and post conditions, state changes, duration, etc. However, what specifically is
recorded can be very different depending on the level of detail or purpose of the
model. While there is no standard for concept recording, there are guidelines like the
ISO 9241-11 standard[1] that suggest what could be recorded for tasks, actors and
parts of the task world.

2.5 Task World Modeling
Task World modeling is for investigating the users and the world in which they act. In
the past most methods have focused on modeling one user and that users’ tasks.
However, in current applications, group aspects are becoming very important. Every
major software supplier now develops its products for use in multi-user distributed
environments. Classic task modeling methods lack the power to deal with these
situations, modeling only the static part of the task world by identifying roles. This
neglects other parts of the organization and dynamic aspects of the task world.

People and Organizations. Modeling the task world means modeling the people that
are part of it and modeling its structure, which is often a part of the organizational
structure. While it may add perspective to see a model of the "official" organizational
structure, for task analysis, the structure of how tasks are actually being done is more
relevant than how they officially should be done. Specifying roles in the organization
and actors’ characteristics gives relevant information that can be used in design. The
roles then need to be attributed to actors. In TKS[3,5] a role is defined to be
responsible for performing the tasks it encompasses; for example, a movie
projectionist is responsible for starting a movie. However, in real organizations, task
responsibilities frequently need to be handled more flexibly resulting in
responsibilities being shifted by delegation or by mandate. The actor playing a role
may therefore not perform the task he or she is responsible for; a movie projectionist
could have someone from the snack bar push the button to start the movie.

Roles and Actors. In classic task analysis literature, as well as in ethnography,
concepts such as actors and roles are commonly referred to regarding tasks and the
task world. Although these terms are intuitively appealing, they can cause confusion
when they need to be named during task analysis.

A role is defined by the tasks the role is responsible for. E.g. a projectionist is
responsible for starting and stopping the movie projector as well as setting op the
movie projector. Mayhew[7] defines an actor as a class of humans whereas others
consider a particular person an actor. Usually there is no need to consider a particular
person and provide a name for an actor (e.g. Chris, Pat) since we are only interested in
describing relevant characteristics of the actor. Confusion arises when an actor is to be
named and the only sensible name seems to be the role name. For instance the actor
who has the projectionist role is most intuitively called the "projectionist" which is
already his/her role name. Therefore it is usually better to name these actors
arbitrarily (A,123, People having role X) and simply record characteristics such as
language, typing skill, computer experience, knows how to use Word etc. The
important part is their characteristics and their relationships with roles.

In other cases, where it does not matter who actually performed the task, it is
sometimes more useful to specify that a task was performed by a role rather than by a
particular actor. Sometimes even a computer system is the actor of a task (e.g an
automated movie projector). Therefor in GTA the concept of actor was renamed agent
to avoid any confusion.

Events. When designing it is useful to know what factors influence the actor when he
is performing the task and what impact they have. Events model dynamic aspects of
the task world: things that happen in the task world, over which the actor does not
always have direct control (e.g. the film breaks, or the cinema has a power failure).
Sometimes there may be no need to explicitly incorporate the event in the new design
but in other cases incorporation is more important. For example, it may prove very
useful to model the projectionist’s reaction to the event of the film breaking.

3 Task modeling for user interface design
After looking at several aspects of task models, some questions remain unanswered.
What distinguishes UI task models from other task models (such as multi agent
models in the field of Artificial Intelligence)? More importantly, what exactly should
a task model include in order for its use to improve the usability of systems in the task
world? We will look at the last question more precisely.

Markopoulos and Gikas[8] take a formal approach in using task models in system
design. They argue that although a designer has a task model, it is still unclear how it
helps him in designing. A task model needs to be formalized in order to conform to
the task world and be useful in UI generation system.

In general UI task models should be able to represent psychological, social,
environmental and situational aspects of the actors and their tasks. Hierarchical
structures such as task decompositions and object structures can give a hint to a good
system structure but for other aspects, such as user characteristics or timing properties,
the relationship with the design is less obvious. Task analysis literature shows that
each task model is designed for a certain purpose. For example, there are task models
that can be used to:

• Validate. Some models are only meant as informal validating tools. They
validate if the designers know enough about the task world for which they are
designing. Methods such as HTA[6] are in this category. These methods result in

quite informal models and do not have a very strong direct relationship with the
design.

• Generate User Interfaces. Models like HUMANOID[12] and ADEPT[4] are
designed to automatically generate a prototype of a user interface. To make the
generation possible they need to be very precise and do not really produce human
readable specifications. They are, not surprisingly, focussed on specifying the
user interface behavior in detail, which makes them much more formal than the
previous category.

• Aid Design. A more advanced use of a task model as a validating tool is to use it
as a design aid. Methods like GTA[14], TKS[3,5] or GOMS[2] give a designer
some "handles" for the design. Extensive task modeling gives concrete
information about which objects or structures should be reflected in the design.
Modeling the roles and agents can give information about the need for user
identification or adaptability of the user interface for users. These methods are
more formal than methods such as HTA[6] but less formal than UI generation
methods such as ADEPT.

In principle a task model should not be used for specifying the user interactions with
the system. Notations like User Action Notation[17] or ETAG[13] allow user actions
to be specified in detail. What is needed is a mechanism to link a task analysis model
to a user interaction model. That way the structure and task flow of the interaction
model can be constructed out of a task model. A prerequisite for this is a formalized
task model. This is however still the missing link in user interface design. Task models
are often too informal which makes them hard to connect with interaction models. A
relatively new approach called model-based interface design can be seen as an attempt
to connect task models and interface models in a more fluent way. In this approach the
design process consists of refining several models that each represent a different
aspect of the design. A formal definition language that is used in every model relates
all models with each other. Currently the task models used in such approaches are
rather basic which limits the power of this approach. In the next sections we will
present an ontology that may fill in this gap in user interface design because it gives a
formal definition of the concepts and relationships that can be used to describe a task
world.

4 An ontology
So far we have discussed common ingredients of task models, and some ways task
models are used in the design of user interfaces. Now we propose an ontology that
incorporates the mentioned ingredients, each to a certain extent. Although the
ontology is mostly based on GTA it can serve as a reference for comparing other
models such as TKS and MAD as well.

It is called an ontology because it describes logical relationships between concepts,
something only informally done (if at all) by the various task analysis models that are
currently being used. The ontology does not imply any graphical representation
because it is defined in concepts and relationships and it therefor makes an extra
abstraction.

4.1 Concepts and Attributes
The concepts defined here are based on the conceptual framework of GTA and can be
found in most other task models as well (with the exception of the event concept).
This section will define the concepts and the next section will define their
relationships in detail.

Object. An object refers to a physical or non-physical entity. A non-physical entity
could be anything ranging from messages, passwords or addresses to gestures and
stories. Objects have attributes consisting of attribute-name and value pairs. What can
be done with an object is specified by actions, for instance move, change, turn off etc.
Furthermore, objects may be in a type hierarchy and can also be contained in other
objects, for example a form may contain an address field, and a cinema can contain a
snack bar. Objects are typically used in tasks but they can also influence the task
execution sequence when they cause events to occur.

Agent. An agent is an entity that is considered active. Usually agents are humans but
groups of humans or software components may also be considered agents. Agents are
not specific individuals (like Chris) but always indicate classes of individuals with
certain characteristics. Attributes of the agent can include skills, attitude and other
miscellaneous. Agents perform tasks and always play certain roles within the task
world.

Role. A role is a meaningful collection of tasks performed by one or more agents. The
role is meaningful when it has a clear goal or when it distinguishes between groups of
agents. A role is consequently responsible for the tasks that it encompasses. Roles can
be hierarchically composed and are assigned to an agent in a certain way. The role can
be obtained by assignment, delegation, mandate or because of a situational context.

Task. A task is an activity performed by agents to reach a certain goal. A task
typically changes something in the task world and requires some period of time to
complete. Complex tasks can be decomposed into smaller subtasks. Tasks are
executed in a certain order and the completion of one task can trigger the execution of
one or more other tasks. A task could also be started because of an event that has
occurred in the task world.

Important for the task concept is the distinction between unit tasks and basic tasks,
where (ideally) a unit task should only be executed by performing one or more basic
tasks. The relationship between the unit task and basic task is interesting because it
can indicate the problems that an agent may have in reaching his goals.

A unit task is defined by Card, Moran and Newell[2] as the simplest task that a user
really wants to perform. A basic task[13] is a task for which a system provides a single
function. Usually basic tasks are further decomposed into user actions and system
operations. A user action is an action done by the human users that is only meaningful
in the context of its basic task (e.g. a key press). A system operation is an action done
by a system; it is not a typical task because it, as such, serves no goal for the user. The
type attribute captures the task type, which can be either unit, basic or composite
(consisting of unit, basic and/or composite tasks). In case of a basic task the
user_actions and system_operations attributes are valid.

Tasks are started because of the completion of other tasks or because of events. For
successful execution of a task a number of start-conditions have to be fulfilled. The
stop-condition specifies when the task has reached completion. The changes in the
task world that have taken place because of this task are described by the difference in
the initial and final state.

Event. An event is a change in the state of the task world at a point in time. The
change may reflect changes of attribute values of internal concepts such as Object,
Task, Agent or Role or could reflect changes of external concepts such as the weather
or electricity supply. Events influence the task execution sequence by triggering tasks.
This model does not specify how the event is created or by whom.

4.2 Relationships
The concepts defined in the previous section are related in specific ways. In this
section we sketch the relationships that we are using now. For each relationship the
first-order predicate definition is given and explained. Figure 2 shows all the concepts
and relationships together in a diagram.

Uses. The XVHV�7DVN�2EMHFW�$FWLRQ� relationship specifies which object is used in
executing the task and how it is used. The $FWLRQ specifies what is being done with the
object. It typically changes the state of the object.

Triggers. The WULJJHUV�7DVN�(YHQW�� WULJJHUHG7DVN�� WULJJHU7\SH� relationship is the basis
for specifying task flow. It specifies that a task is triggered (started) by an event or a
task and the type of the trigger. If the task is part of a choice the triggertype is 25.
Other possible triggers are: $1' for specifying parallel executed tasks, and 1(;7 for
indicating linear succession of tasks. The triggers relationship is very similar to
triggers used in workflow representations and allow for specifying concurrency in
various ways. We will explain later how this relationship is used to generate a visual
representation of a flow diagram.

Plays. Every agent should play one or more roles. The SOD\V�$JHQW�� 5ROH�

$SSRLQWPHQW� relationship also indicates how this role was obtained. Currently, the
$SSRLQWPHQW parameter can be $66,*1('�� '(/(*$7('��0$1'$7('�or 62&,$/�� In the
future, we want to look more closely at role appointing, so this relationship may
undergo changes in subsequent versions of this ontology.

Performed_by. The relationship SHUIRUPHGBE\�7DVN��$JHQW�5ROH� specifies that a task
is performed by an agent. This does not mean that agent is also the one who is
responsible for the task because this depends on his role and the way it was obtained.
When it is not relevant to specify the agent that performs the task, a role can also be
specified as the performing entity.

Subtask. The VXEWDVN�7DVN��6XE7DVN� relationship describes the task decomposition.

Subrole. The VXEUROH�5ROH�� 6XE5ROH� relationship brings roles into a hierarchical
structure. The subrole relationship states that a role includes other roles including the
responsibility for the task that encompass the role. When a role has subroles the task
responsibilities are added up for the role. For example, the role of snack bar worker
may have the subroles of popcorn maker, snack bar cashier, and daytime janitor.

Responsible. The UHVSRQVLEOH�5ROH�� 7DVN� relationship specifies a task for which the
role is responsible. Continuing the example above, the snack bar worker role is
responsible for all the tasks of the subroles popcorn maker, snack bar cashier, and
daytime janitor.

Used_by. The XVHGBE\�2EMHFW�� $JHQW�5ROH�� 5LJKW� relationship indicates who used
which object and what the agent or role can do with it. The agents’ rights regarding
objects can be of existential nature (&5($7(and '(6752<�, indicate ownership
(2:1(5), or indicate daily handling of objects (86(��&+$1*().

The relationships of this model form a minimal set of relationships that exist.
However, when using this model there are also other relationships that can be of
interest. Consider for instance a relationship involved_role that indicates which roles

are involved in a task. Such a relationship could be defined as the roles of the agents
involved in the task and all the involved roles of the subtasks. The involved_role
relationship is not part of the ontology because it can be defined using only the
relationships of the ontology. The next section will show how all these relationships
can be used in practice.

Fig. 2. The concepts and relations

Task Agent

Role

Event

Object

name(string)
goal(string)
start_condition(string)
stop_condition(string)
initial_state(string)
final_state(string)
duration(integer)
frequency(string)
type(enum)
user_actions(string)
system_operations(string)

name(string)
skills(string)
attitude(string)
miscellaneous(string)

name(string)
goal(string)name(string)

attribute(Name,Value)*
action(Name)*

name(string)
description(string)

Contains

Responsible

Performed_by

PlaysTriggers

Subtask

Uses

Triggers

Used_by

Subrole

Is

Performed_by

5 Supporting task analysis
Anyone who has ever done task analysis knows that even with the use of models it is
still not an easy task. The biggest problem is often not in applying one technique[15],
but in communicating results to a client or to other members of a design team. If the
results of a task analysis are not communicated well their value for the design process
rapidly diminishes. This section addresses this issue of how task analysis can be
supported.

5.1 Formal models and tools
The ontology described in the previous section is not very formal and still leaves task
details in the darkness. Many other task-modeling methods end up with quite formal
models. Our experience with design situations, both in education and industry, shows
that formal methods do not (by themselves) improve the communication between the
members of a design team or with the client. Designers are very easily demotivated by
pages of formal methods which they can not easily use. We think that task analysis
tools (based on the models) are more appropriate for supporting communication,
thereby hiding the complexities of the models and hiding parts of the models designers
do not need to know about.

For task analysis to add value to the design process, its tools should be tailored to the
designer. Usually a design team consists of many designers from different disciplines
and backgrounds varying from psychology or computer science to anthropology or art.
Each of them has specific needs and requires certain views on the task model. For
instance some members may want just a quick overview of the task structures while
others may need details on task execution conditions. However when multiple
representations are being used they need to be consistent with each other. This
consistency can be guaranteed when the representations are all based on the same
model. Our ontology meets this requirement by abstracting from the visual
representations and focussing on the underlying relationships between concepts,
allowing multiple visual representations.

5.2 Graphical representations and the ontology
Currently we are developing a task analysis tool - EUTERPE- that uses the ontology as
a basis for task analysis1. A Prolog representation of the ontology is used as a
relational database from which several visual representations such as simple
templates, lists, trees, or flow models are generated. Another possible view is a
generated HTML document that serves as hypertext documentation of the task model
which can only be viewed and not edited (yet). The views not only allow designers to
inspect a task model but also allow modification and creation of new instances of tasks
etc. which will automatically show up in other views as well. Figure 3 shows the basic
structure of the tool.

One part of our research is to investigate which visual representations are useful to
designers from different disciplines. One example of new visual representation is a

1 The latest information about GTA and our tools can be found at:

http://www.cs.vu.nl/~martijn/gta/index.html

kind of fish-eye view where you only see a part of all the information for instance
about a certain task. Shifting the fish-eye to a related object shows all the information
related to that object. By distinguishing between the underlying ontology and the
graphical representations, views can be changed or added to without having to
completely revise the underlying data or ontology. It is our goal to find views that are
useful and to provide an environment in which these views are available to all
members of the design team.

5.3 Generating visual representations
Our tool EUTERPE uses the ontology directly to generate the visual representations.
Consider a task tree. For editing and viewing the task tree we have program code that
takes care of all the user interaction handling. To do this you need at least a tree data-
structure that is created by querying the prolog engine. The algorithm looks like this:

SURFHGXUH�%XLOG7DVN7UHH�VWDUW1RGH��^

(1) ask the database for all subtasks of VWDUW1RGH (in Prolog: VXEWDVN�VWDUW1RGH�;��

(2) add them as siblings of the VWDUW1RGH

(3) call�%XLOG7DVN7UHH�� for every sibling of VWDUW1RGH

`

This procedure recursively builds up a tree datastructure that is used in the tree
drawing routines. In a similar way other views can be generated using the ontology.
Consider the task flow representations of Figure 1. This task flow representation can
be expressed using the triggering relationships as follows:

WULJJHUV��&DOO�IULHQG���7DNH�0HWUR��25��

WULJJHUV��&DOO�IULHQG���:DON��25��

WULJJHUV��7DNH�0HWUR���%X\�7LFNHW��1(;7��

WULJJHUV��:DON���%X\�7LFNHW��1(;7��

WULJJHUV��%X\�7LFNHW���(QWHU�&LQHPD��1(;7�

A task flow viewer can generate visual representations by asking for the specified
triggering relationships. The algorithm looks like this:

SURFHGXUH�%XLOG)ORZ*UDSK�VWDUW1RGH��^

(1) ask the database for all tasks triggered by VWDUW1RGH (in Prolog:
WULJJHUV�VWDUW1RGH�;�<��

Task Model
Database

Task Model
Database

Tree ViewTree View
Fish-eye

 View
Fish-eye

 View
Flow ViewFlow View TemplateTemplate

HTML docHTML doc

Fig. 3. Basic tool structure

(2) add them as nodes and add edges between them and the VWDUW1RGH

(3) call�%XLOG)ORZ*UDSK�� for every node that has an edge starting in VWDUW1RGH

`

 Note that even the extra task "Go There" can be automatically detected in case of a
task tree with constructors; move tasks to the next level if the trigger type is not 1(;7
and tasks with 1(;7 triggers exist in that level.

 For the templates similar techniques are being used, complemented by

straightforward querying of attributes. Besides the relationships from the ontology
Euterpe also uses derived relationships such as involved_role that was mentioned
earlier.

6 Operationalizing the Ontology
Figure 4 shows some views that are generated based on the ontology. The user of the
tool does not need to be completely aware of the underlying ontology. For the user it
can be just a useful aid in a task analysis. However the ontology is the Structuring

Fig. 4. Screenshot of some views

principle of the tool and the user is implicitly offered a structured approach to task
analysis.

The operationalized ontology in the tool also contains an extra attribute media_object
in every concept. It allows designers to attaches any kind of media such as movies,
audio files or images to a concept. In this way results of ethnographic studies are also
immediately available to the design team.

7 Conclusions
In this paper, we have covered:

1. Ingredients common to most task models, including task decomposition, task
flow, and task world modeling.

2. How task modeling relates to the design of user interfaces.

3. Our proposed new ontology for task analysis, allowing multiple visual
representations to be generated from the same data.

4. A task analysis tool showing how this ontology can be used to support the design
of user interfaces.

We believe that task models should be based on a clear underlying ontology that
captures all relevant aspects of the task world, and allows multiple visual
representations to be generated from it. We hope that this will facilitate the process of
using task models to aid the design of user interfaces.

Acknowledgements
We wish to thank Melissa G. Schofield and Steve P. Guest for their enthusiastic help
and invaluable suggestions.

References
1. Bevan, N.: Ergonomic requirements for office work with VDTs. part 11, ISO DIS

9241-11

2. Card, S.K., Moran T.P., Newell, A.: The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Erlbaum

3. Johnson, P., Johnson, H.: Task Knowledge Structures: Psychological basis and
integration into system design. Acta Psychologica 78, pp 3-26, 1991

4. Johnson, P., Wilson, S., Markopoulos, P., Pycock, J.: Adept - Advanced Design
Environment for Prototyping with Task Models. Proceedings InterCHI’93,
Demonstration Abstract, Addison-Wesley, April 1993.

5. Johnson, P., Johnson, H., Waddington, R., Shouls, A.: Task-Related Knowledge
Structures: Analysis, Modelling and Application. People and Computers IV 1988,
Proceedings 4th British Computer Society HCI group

6. Kirwan, B., Ainsworth, L.K.: A Guide to Task Analysis. Taylor & Francis Ltd
1992

7. Mayhew, D.J.: Principles and Guidelines in Software User Interface Design.
ISBN 0-13-721929-6, Prentice Hall PTR, New Jersey, 1992.

8. Markopoulos, P., Gikas, S.: Towards a Formal Model for Extant Task Knowledge
Representation. In C. Stary (ed.), First Interdisciplinary Workshop on Cognitive
Modelling and User Interface Development, Vienna, December 1994.

9. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models. Proceedings of Interact 97, 14-18 July 1997

10. Scapin, D., Pierret-Golbreich, C.: Towards a method for task description: MAD.
Work with display units 89, Elsevier, Amsterdam

11. Sebillotte, S.: Hierarchical planning as method for task analysis: The example of
office task analysis. Behaviour and Information Technology 7(3), 275-293, 1988

12. Szekely, P., Luo, P., Neches, R.: Beyond Interface Builders: Model-Based
Interface Tools. In Proceedings of INTERCHI ’93 April, 1993, pp. 383-390

13. Tauber, M.J.: ETAG: Extended Task Action Grammar - A language for the
description of the user’s task language. In D. Diaper, D. Gilmore, G. Cockton and
B. Shackel, Proceedings INTERACT ’90, Amsterdam, Elsevier

14. van der Veer, G.C., Lenting, B.F., Bergevoet, B.A.J.: GTA: Groupware Task
Analysis - Modeling Complexity. Acta Psychologica 91, 1996, pp. 297-322 Acta
Paper

15. van der Veer, G.C., Mariani, M.: Teaching Design of Complex Interactive
Systems. Learning by Interacting TeaDIS, Teaching Design of Interactive Systems,
Schaerding, Austria, 20 - 23 May 1997

16. van der Veer, G.C., van Welie, M., Thorborg, D.: Modeling Complex Processes in
GTA. Sixth European Conference on Cognitive Science Approaches to Process
Control (CSAPC), pp. 87-91, Rome, Italy, 23-26 september 1997

17. Rex Hartson, H., Siochi, A.C., Hix, D.: The UAN: a user-oriented representation
for direct manipulation interface designs. ACM Transactions on Information
Systems Vol.8, No. 3 (July 1990), pp. 181-20

