
 Tools for Working with Guidelines 1

Patterns as Tools for User Interface Design

Martijn van Welie, Gerrit C. van der Veer, Anton Eliëns

Vrije Universiteit, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, Holland

{martijn,gerrit,eliens}@cs.vu.nl

Abstract. Designing usable systems is difficult and designers need effective
tools that are usable themselves. Effective design tools should be based on
proven knowledge of design. Capturing knowledge about the successful design
of usable systems is important for both novice and experienced designers and
traditionally, this knowledge has largely been described in guidelines. However,
guidelines have shown to have problems concerning selection, validity and ap-
plicability. Patterns have emerged as a possible solution to some of the problems
from which guidelines suffer. Patterns focus on the context of a problem and so-
lution thereby guiding the designer in using the design knowledge. Patterns for
architecture or software engineering are not identical in structure and user inter-
face design also requires its own structure for patterns, focusing on usability.
This paper explores how patterns for user interface design must be structured in
order to be effective and usable tools for designers. A structure for user interface
design patterns is proposed and is illustrated with an example.

1 Introduction

Guidelines have since long been used to capture design knowledge and to help design-
ers in using that knowledge when designing user interfaces. The design knowledge
helps the designer to make the right design decisions and prevents the designer from
making the same mistakes over and over again. However, applying guidelines is not
without problems. Usually guidelines are numerous and it is difficult to select the
guidelines that apply to a particular design problem. Additionally, guidelines may
seem to contradict each other and consequently the designer may still not solve the de-
sign problem. Guidelines are usually very compact but their validity or appropriate-
ness always depends on a context. Software tools for working with guidelines can help
but do not address the core problems of guidelines. Instead of offering software tools
for working with guidelines, we propose patterns as a solution to some of the problems
of using guidelines. Patterns explicitly focus on context and tell the designer when,
how and why the solution can be applied. Hence, patterns can be more powerful than
guidelines as tools for designers. Inspired by the work of Alexander [1], patterns have
become popular in software construction [6]. Interest in patterns for user interface de-
sign (UID) goes back to 1994 [2,9] but a proper set of such patterns still has not
emerged. Some attempts have been made to create patterns but there appears to be a
lack of consensus about how patterns for UID should be written down, which focus
they should have and how they should be structured. Consequently, a potentially even

 Tools for Working with Guidelines 2

more interesting pattern language for UID has not been established since it is
necessarily preceded by the development of a sufficiently large body of patterns. In
Section 2, we will take a closer look at why patterns can be more effective than
guidelines. In Sections 3 and 4 we will look at the definition of patterns and how that
translates to patterns for UID. In Section 5 we will propose a template for UID
patterns focused on usability and will discuss and illustrate the template with an elabo-
rated example.
2 Guidelines or Patterns?

The purpose of guidelines is to capture design knowledge into small rules, which can
then be used when constructing new user interfaces. A pattern is supposed to capture
proven design knowledge and is described in terms of a problem, context and solution.
Since they have more or less the same purpose, the format may seem the only differ-
ence. On one hand it is true that the design knowledge of a guideline could also be
written down using a pattern template. On the other hand, the fact that a template is
used to write down the guideline does not necessarily make it a pattern. For patterns it
is important that the solution is a proven solution to the stated problem and the design-
ers agree upon the fact that it is a proven solution. Designers share values and ideas so
the pattern must relate to their experience. With guidelines this is often an issue be-
cause guidelines are usually not explained together with a rationale. In the Smith and
Mosier guidelines [11] some guidelines have a short rationale in the comment field but
they are often simply defined without any argumentation whereas some are just style
definitions and not generic guidelines.

It has often been reported that guideline have a number of problems when used
[4,8]. Some of the problems are:

• Guidelines are often too simplistic or too abstract
• Guidelines can be difficult to select
• Guidelines can be difficult to interpret
• Guidelines can be conflicting
• Guidelines often have authority issues concerning their validity

One of the reasons for these problems is the fact that most guidelines suggest a
general absolute validity but in fact, they can only be applied in a specific context.
This context is crucial for knowing which guidelines to use and why. For many design
decisions, it is simply required to know the tasks of the users and the characteristics of
the users. Without that knowledge, the design problem cannot be solved adequately.
Guidelines have no intrinsic way of stating the context for which they apply and at
most, it is briefly mentioned.

Another problem of guidelines is that it is often difficult to see what the problem is
and why the guideline is like it is. For example, consider a very simple guideline say-
ing “Left align labels in dialog window”. What is the real problem being addressed by
this guideline? It is not “how to layout labels” because that would be a problem for the
UI designer. But what is the benefit for the end-user? In our opinion, the real problem
should be concerned with understanding information on a display with aspects such as
scanning time and readability which goes back to Fitt’s law [5]. A pattern makes both

 Tools for Working with Guidelines 3

the context and problem explicit and the solution is provided along with a rationale.
Consequently, compared to guidelines, patterns contain more complex design knowl-
edge and often several guidelines are integrated in one pattern.

Guidelines exist usually in two forms; do this or do not do this. Patterns focus on
"do this" only and are hence prescriptive and constructive. Further more, solutions
need to be very concrete and should not raise new questions surrounding the solution.

3 An Example

The following pattern is a very simple example of a pattern for user interface design.
It is focused on the use of warning messages to protect the user.

Name The Shield
Problem The user may accidentally select a function that has irreversible

(side) effects.
Usability Principle Error Management
Context The user needs to be protected against unintended or accidental ac-

tions that have irreversible (side) effects. The (side) effects may lead
to unsafe or highly undesired situations. For example the unintended
deletion or overwriting of files. Do not use for actions that are reversi-
ble.

Forces - The user is striving for speed while trying to avoid mistakes.
- The severity of the (side) effects.

Solutions Protect the user by inserting a shield.
Add an extra protection layer to the function to protect the user from
making mistakes. The user is asked to confirm her intent with the de-
fault answer being the safe option.

Examples

A copy of the file already exists at the specified location. Overwriting
it will result in loss of the copy. The default is “No” so that the speedy
user has to take the effort of saying “Yes”.

Usability Impact Increased safety, less errors and higher satisfaction. However, it re-
quires extra user action which leads to lower performance time.

Rationale The extra layer causes the user to require 2 repetitive mistakes instead
of 1. The safe default decreases the chances for a second mistake.

Known Uses Microsoft Explorer, Apple Finder

The pattern is related to a problem that a user might have, how it can be solved and
why it works. The pattern contains knowledge that would otherwise be described in at
least two guidelines; "choose save defaults" and "ask for confirmation".

 Tools for Working with Guidelines 4

4 Patterns as Tools

Patterns are potentially better tools than guidelines because they explicitly are related
to a context and are problem centered. Although this may conceptually be true, in
practice creating patterns for UID is not that easy. A pattern for UID is not necessarily
structured in the same way as an architecture pattern and it is important to find a for-
mat that has been designed for UID and has the right view on the important issues in
UID. Suitability for describing usability related problems is an important issue for
UID patterns. In this section, we will define pattern and propose a format for them.

4.1 Defining a Pattern

As the name pattern already suggest, a pattern is concerned with repeating elements,
problems and solutions than emerge. Alexander [1] defines a pattern as follows; "Each
pattern is a three-part rule, which expresses a relation between a certain context, a
problem, and a solution". He goes on explaining the nature of a pattern; "Each pattern
describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this
solution a million times over…”. From these explanations it shows that patterns are
very practical, they describe instances of “good” design and not vague principles or
strategies. Further more, they have been proven and are hence not theories or specula-
tion. It is therefore necessary that a pattern contains a rationale why the solution works
and proof by referring to examples where the pattern was successfully applied. Pat-
terns are prescriptive and help designers construct new instances. Alexander said a
pattern should describe the core of a solution. Other related issues concerning the con-
text are therefore dealt with by other related patterns that are being referenced to. Pat-
terns for different purposes usually do not exactly have the same template and for each
purpose an adaptation is needed. The main fields are always problem, context, solu-
tion, and forces. The remaining fields are extensions that should help make the knowl-
edge even more clear.

4.2 Anti-Patterns

Within the Software Engineering community, the success of patterns led to the devel-
opment of anti-patterns [3]. Anti-patterns focus on why things are not going right and
then a solution is given. It can be seen as a pattern that is preceded by an example of
bad design. It shows how not to do it and then how to solve it. Therefore, anti-patterns
are descriptive and reflect on a particular design choice. In user interface design, many
examples of bad design have been documented1. Seeing bad designs may be very in-
spiring but it does not directly help to solve problems.

Patterns and anti-patterns can also be combined by extending the normal pattern
with an example of what is likely to happen if the pattern is not used. What is the dan-

1 For example the "Interface Hall of Shame", http://www.iarchitect.com/shame.htm

 Tools for Working with Guidelines 5

ger of not solving the problem right? In particular for UID this may be very illustrative
because the “danger” can often be shown with a single screenshot.

5 Writing Patterns for UID

Patterns for UID should share the same philosophy as patterns for architecture or
software construction. However, the exact format for a pattern depends on the “topic”
and therefore patterns for UID also need a specialized format. We can learn from SE
patterns in the sense that those patterns also needed a modification. Patterns are writ-
ten with a certain “view” on the problems. In architecture this was defined as “quality
without a name”, a comfortable or enjoyable living environment. In SE the view is re-
lated to re-use, flexibility and efficiency of the system. In our opinion, the view for
UID patterns should simply be usability. Patterns for UID should help making systems
more usable for humans in the same way as Alexander's pattern made living more
pleasant to humans. Therefore, before we can define a format for UID patterns we
need to understand what usability is so that the important aspects of the format can be
derived.

5.1 A View on Usability

Many different definitions of usability exist, making usability a confusing concept
when actually designing a new system. Fig. 1 shows a layered model of usability [13]
that helps understanding the concept of usability. On the highest level, the ISO defini-
tion of usability is given, split up in three aspects: efficiency, effectiveness and satis-
faction. This level is a rather abstract way of looking at usability and is not directly
applicable in practice. However, it does give three solid pillars for looking at usability
that are based on a well-formed theory. The next level contains a number of usage in-
dicators which are indicators of the usability level that can actually be observed in
practice when users are at work. Each of these indicators contributes to the abstract
aspects of the higher level. For instance, a low error-rate contributes to a better effec-
tiveness and good performance speed indicates good efficiency. The desired "level"
for each of the usage indicators depends on the nature of the system. For a production
system efficiency may be the main goal, but for an entertainment website satisfaction
may be far more important than efficiency.

One level lower is the level of means. Means cannot be observed in user tests and
are not goals by themselves whereas indicators are observable goals. The means are
used in "heuristics" for improving one or more of the usage indicators and are conse-
quently not goals by themselves. For instance, consistency may have a positive effect
on learnability and warnings may reduce errors. On the other hand, high adaptability
may have a negative effect of memorability while having a positive effect of perform-
ance time. Each means can have a positive or negative effect on some of the indica-
tors. The means need to be "used with care" and a designer should take care not to ap-
ply them automatically. The best usability results from an optimal use of the means
where each means is at a certain "level", somewhere between "none" and "com-
pletely/everywhere/all the time". It is up to the designer to find those optimal levels

 Tools for Working with Guidelines 6

for each means. In order to do so the designer has to use the three knowledge domains
(humans, design, and task) to determine the appropriate levels. For example, when de-
sign knowledge is consulted by using guidelines, it is clear that the guidelines should
embody the knowledge of how changes in use of the means affect the usage indicators.

The list of usage indicators is complete in the sense that these ones have been iden-
tified in literature. The number of possible means however is quite large and only
some examples of means are shown in Fig. 1. The means can be grouped according to
the ergonomic principle that is involved. Scapin [10] suggests a categorization of such
principles, which include guidance, workload, explicit control, adaptability, error
management, consistency, significance of codes and compatibility.

Effectiveness Satisfaction

Learnability Satisfaction

MemorabilityPerformance Speed

Errors/Safety

Consistency Feedback

Warnings

Shortcuts
Undo

Task Conformance

Efficiency
Usability

Usage Indicators

Means

User Model Task ModelDesign KnowledgeKnowledge

Flexibility

 has an impact on
 is a source for improving

Grouping

Task Completion

Fig. 1. A layered model of usability

5.2 A Template for Design Patterns

A pattern for UID should be focused on solutions that improve the usability of the sys-
tem in use. From the usability model of the previous section we can see that improve-
ments in usability must be measurable in usage indicators. Each pattern should there-
fore state the impact on these usage indicators. In short, if a UID pattern does not im-
prove at least one usage indicator, it is not a UID pattern. Preferably, a pattern should
be based on an ergonomic principle [10] such as user guidance, or consistency, or er-
ror management. The rationale section should explain how the ergonomic principles
as used in the solution lead to an improvement of the usage indicators. In contrast,
guidelines usually describe the usage of means without referring to the relevant usage
indicators or context of use.

 Tools for Working with Guidelines 7

The main elements of each pattern can be used directly for UID patterns as well.
However, it is important to write them down in the right “view”.

• Problem. Problems in UID patterns should be usability problems of the system in
use. Problems are related to usage of the system and are relevant to the user or any
other stakeholder that is interested in usability. In contrast to SE patterns, problems
in UID patterns should not be focused on constructional problems designers are
facing. Hence, problem descriptions should often be user task oriented.

• Context. The context is also focused on the user. What are the characteristics of the
context of use, including the tasks, users and environment for which the pattern can
be applied?

• Solution. A solution must be described very concretely and must not impose new
problems. However, a solution describes only the core of the solution and other
patterns might be needed to solve sub-problems. Other patterns relevant to the so-
lution should be referenced to.

• Examples. The example should show how the pattern has been used successfully in
a system. An example can often be given using a screenshot and some additional
text to explain the context of the particular solution. It is preferred to use examples
for real-life systems so that the validity of the pattern is enforced. If a writer cannot
find any real-life example, the pattern is either not a good pattern or rarely applied.

The fields and “view” needed to write UID patterns are important. For example if
the view is taken wrongly, one might write patterns on “how to use tab controls”. This
is very tempting to do especially when guidelines are rewritten into pattern format.
Such views take on the perspective of the designer and not the user. Moreover, the de-
sign knowledge about “how to use tab controls” depends on the context of when it is
applied, the users and their task. In other words, it is looking at the problem from the
point of the solution without knowing the problem. The example in the appendix
shows the complete template with fields that are specific for UID patterns.

Sutcliffe has also proposed a way of describing the contents of a pattern using a
claims approach [12]. Apart from terminology (Scenario for Example, Effect for Us-
ability Impact etc.) the structure is very similar. However, there is neither an explicit
problem statement nor a context specification.

5.3 An example: The Wizard Pattern

In the appendix the Wizard pattern is given. The wizard is a well-known artifact that
can be found in many applications such as installation programs but also in ATM’s.
Many guidelines tell designers how to use the wizard or how to design effective wiz-
ards. Naturally it is good to use them when writing patterns. The first problem when
writing a pattern for the wizard phenomenon, is thinking about what exactly the prob-
lem is for which the wizard is a solution. Characteristic is that it is concerned with a
task that is a basic task to the user. The user thinks about the task as “one thing”. For
example, “install a program”. However, the task has several subtasks where decisions
need to be made and the wizard helps the user take these steps. Then the context needs
to be defined and the exact constraints need to be formulated because the wizard is not

 Tools for Working with Guidelines 8

always the solution for the problem. The context puts the constraints such as the user
expertise and the number of subtasks. The problem statement, context definition and
forces are difficult to get right and the pattern writing community will certainly need
several iterations. Then the solution needs to be described in a way that is as general
as possible without describing a particular instance of the wizard. For example in this
pattern we choose to speak about navigational widgets instead of a “next and previous
button” because that is not the essence of the solution. It is the possibility to navigate
in a sequence of tasks. The rationale and usability impact field then explain why this
solution works for the problem in the specified context.

5.4 A Network of Patterns

Within Alexander's collection of patterns and also in the SE pattern collection, a net-
work of patterns is used to connect patterns. Mahemof [7] has already suggested sev-
eral different kinds of patterns for UID. Certain patterns can deal with small problems
that deal with only one screen while others focus on a high level principle such as
choosing for direct manipulation. In our opinion, such a hierarchy will appear only
when a sufficient number of patterns have been identified so that distinctions can be
made. The structure of a collection should be based on how the patterns are used in
practice. Since it is premature to make assumptions about the actual usage of patterns,
we will restrict the scope of our paper to the development of patterns.

6. Patterns Collections

Although interest in patterns for UID has existed for some years, patterns are still not
widely available, let alone pattern collections. Currently there are two collections
available. The first one was compiled by Jenifer Tidwell2 and contains ± 60 patterns.
The other collection was compiled by the Usability Group of the University of Brigh-
ton3 and contains only a dozen patterns. When comparing the patterns from these col-
lections, it is clear that there is a large difference in the format that is used. The Tid-
well collection is structured using the standard fields; name, problem, context exam-
ples and forces. The Brighton collection is not so structured and used a narrative form
filled with examples of “bad” design as introduction to the pattern. Both collections
contain anecdotes that illustrate the pattern. However, closer inspection of the patterns
shows that writing patterns is not a trivial task. Some patterns are just direct rewrites
of guidelines. Other problems lay in the essence of the pattern; the problem descrip-
tion and the solution. Problems are often described very vaguely and the attention is
quickly focused to the solution. However, this is contradictory to the purpose of a pat-
tern. It is important that the problem is formulated accurately so that it can be verified
that the solution is actually solving the problem. Consider the example of the "Status
Display"4 pattern:

2 http://www.mit.edu/~jtidwell/common_ground.html
3 http://www.it.bton.ac.uk/cil/usability/patterns/
4 http://www.mit.edu/~jtidwell/language/status_display.html

 Tools for Working with Guidelines 9

− Problem: How can the artifact best show the state information to the user?
− Solution: Choose well-designed displays for the information to be shown. Put them

together in a way that emphasizes the important things, de-emphasizes the trivial,
doesn’t hide or obscure anything, and prevents confusing one piece of information
with another.

This pattern states a problem that is not directly a problem of the end-user. Moreo-
ver, the solution is rather vague and creates new questions such as what exactly is a
"well-designed display"? A solution description should avoid phrases like "…design in
a manner that emphasizes…", "…use self explaining labels for…", "…choose the
most appropriate…" which all contains subjective judgment and consequently do not
contribute to describing the core of a solution.

6.1 The Amsterdam Pattern Collection

The example pattern "The Wizard" in the appendix is one of the patterns that can be
found in the collection we started5. At the time of writing, our collection contains
twenty patterns that have been formulated using the template given in the previous
section. The reason for starting a new collection is that we wanted a collection of pat-
terns that is strictly focused on problems of the end-user and not problems of design-
ers. The patterns are candidates since the process of reaching consensus is still pro-
gressing. Anyone can submit new patterns and the patterns are being discussed by a
small group of researchers and practitioners. The site is built using XML in order to
create a consistent and standard format for publishing patterns. Additionally, the use
of XML facilitates several ways of automatic indexing or categorizing of patterns. Pat-
tern writers can submit a pattern using the pattern DTD which causes all patterns to be
rendered in a consistent way. Other patterns in our collection are “The Canonical
Grid”, “Dead or Alive”, and “The Shield”. We try the use metaphors in our pattern
names in order to improve the development of a pattern language.

7. Towards a Pattern Language

When a community agrees upon a collection of patterns, it is possible to speak of a
pattern language. Patterns are usually related to each other and consequently a net-
work of patterns constitutes a pattern language. The development of a pattern language
is the highest goal in pattern research. However, before we can speak of a pattern lan-
guage for user interface design it is necessary to develop good patterns. In this paper
we have outlined a format for UID patterns and illustrated the format with an exam-
ple. We are now actively working on the development of a substantial amount of pat-
terns and the evaluation of the patterns to create the very important agreement. Valid-
ity and agreement are requirements for a pattern language. Not anything written down
in a pattern form is a pattern and should not be accepted as such. Up till now, our work
has focused on the development of patterns but in the near future the pattern approach
needs to be tested to see whether they are indeed more effective than guidelines.

5 http://www.cs.vu.nl/~martijn/patterns/index.html

 Tools for Working with Guidelines 10

8. Conclusions

Patterns represent proven design knowledge in a much richer context than guidelines.
Patterns are problem oriented and are potentially more usable for designers than
guidelines. Patterns for UID require their own format and a standard template has
been defined. The format is based on the other formats as used in architecture and
Software Engineering but applied with a focus on designing for usability. We argued
that only once a body of patterns has been accepted we could work towards a real pat-
tern language for UI designers. The defined format and focus for UID patterns should
contribute to the development of such a body of patterns.

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S.:
A Pattern Language. Oxford University Press, New York (1977)

2. Bayle, E.: Putting it All Together: Towards a Pattern Language for Interaction Design.
SIGCHI Bulletin. Vol. 30, No. 1 (1998) 17–24

3. Brown, W.J., Malveau, R.C., McCormick, H.W. and Mowbray, T.J.: Anti Patterns, Refac-
toring Software, Architectures and Projects in Crisis. John Wiley, New York (1998)

4. Dix, A., Abowd, G., Beale, R. and Finlay, J.: Human-Computer Interaction. Prentice Hall,
Europe (1998)

5. Fitts, P.M.: The information capacity of the human motor system in controlling the ampli-
tude of movement. Journal of Motor Behavior. Vol. 47 (1954) 381–391

6. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

7. Mahemoff, M.J. and Johnston, L.J.: Pattern Languages for Usability: An Investigation of
Alternative Approaches. In Proc. of Asia-Pacific Conference on Human Computer Interac-
tion APCHI’98 (Shonan Village, 1998). IEEE Computer Society, Los Alamitos, 25–31

8. Mahemoff, M.J. and Johnston, L.J.: Principles for a Usability-Oriented Pattern Language. In
Proc. of Australian Computer Human Interaction Conference OZCHI’98 (Adelaide, 1998).
IEEE Computer Societey, Los Alamitos, 132–139

9. Rijken, D.: The Timeless Way... the design of meaning. SIGCHI Bulletin. Vol. 6, No. 3
(1994) 70–79

10. Scapin, D.L. and Bastien, J.M.C.: Ergonomic criteria for evaluating the ergonomic quality
of interactive systems. Behaviour & Information Technology. Vol 16, No. 4/5, (1997) 220–
231

11. Smith, S. and Mosier, J.: Guidelines for Designing User Interface Software. MITRE (1986)
12. Sutcliffe, A. and Dimitrova, M.: Patterns, Claims and Multimedia. In Proc. of Conf. on

Human-Computer-Interaction Interact '99 (Edinburgh, 30th August - 3rd September 1999).
IOS Press. 329–335

13. van Welie, M., van der Veer, G.C., and Eliëns, A. Breaking down Usability. In Proc. of
Conf. on Human-Computer-Interaction Interact'99 (Edinburgh, 30th August - 3rd September
1999). IOS Press, 613–620

 Tools for Working with Guidelines 11

Appendix

Name The Wizard
Problem The user wants to achieve a single goal but several decisions

need to be made before the goal can be achieved completely,
which may not be known to the user.

Usability Prin-
ciple

User Guidance

Context The Wizard pattern can be used when a non-expert user needs to
perform an infrequent complex task consisting of several subtasks
in a linear order where decisions need to be made in each subtask.
The number of subtasks must be small, e.g., typically between ~3
and ~10.

Forces • The user needs to perform a complex task but may not be famil-
iar with the steps that need to be performed.

• Each task needs to be performed but the users may not always
be interested in each task.

• The time it takes to perform the entire task.
• The task are ordered but are not always independent of each

other i.e. a certain task may need to be finished before the next
task can be done.

Solutions Take the user through the entire task one step at the time. Let
the user step through the tasks and show which steps exist and
which have been completed.

When the complex task is started, the user is informed about the
goal that will be achieved and the fact that several decisions are
needed. The user can go to the next task by using a navigation
widget (for example a button). If the user cannot start the next task
before completing the current one, feedback is provided indicating
the user cannot proceed before completion (for example by dis-
abling a navigation widget).

The user should also be able to revise a decision by navigating
back to a previous task. The user is given feedback about the pur-
pose of each task and the user can see at all times where (s)he is in
the sequence and which steps are part of the sequence. When the
complex task is completed, feedback is provided to shown the
user that the tasks have been completed and optionally results
have been processed.

Users that know the default options can immediately use a short-
cut that allows all the steps to be done in one action. At any point
in the sequence it is possible to abort the task by choosing the
visible exit.

 Tools for Working with Guidelines 12

Examples

The user wants to package a presentation so that the presentation can be
given on another computer. Several relevant decisions need to be taken
and the wizard helps the user take these decisions. The green box shows
the current position in the sequence of tasks.

Usability
Impact

Improves the learnability and memorability of the task but may have a
negative effect of the performance time of the task. When users are
forced to follow the order of tasks, users are less likely to forget impor-
tant things and will hence make fewer errors.

Rationale The navigation buttons show the users that they are navigating a one-
dimensional space. Each task is presented in a consistent fashion enforc-
ing the idea that several steps are taken. A simple task sequence informs
the user at once which steps will need to be taken and where the user cur-
rently is.

Known Uses Microsoft Powerpoint, Pack and Go wizard;
Installshield installation programs

