
 1

Task Based Groupware Design:
Putting theory into practice

Gerrit van der Veer
Division of Mathematics and Computer Science, FEW,

Vrije Universiteit, de Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

+31 20 4447764
gerrit@acm.org

Martijn van Welie
Division of Mathematics and Computer Science, FEW,

Vrije Universiteit, de Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

+31 20 4447788
martijn@acm.org

ABSTRACT
Designing Groupware systems requires methods and tools that
cover all aspects of Groupware systems. We present a method that
utilizes known theoretical insights and makes them usable in
practice. In our method, the design of Groupware systems is
driven by an extensive task analysis followed by structured design
and iterative evaluation using usability criteria. Using a
combination of multiple complementary representations and
techniques, a wide range of aspects of Groupware design is
covered. The method is built on our experiences and is used in
practice by several companies and educational institutes in
Europe. We define the design process, the models needed and the
tools that support the design process.
Keywords
DUTCH, Design Method, GTA, Groupware, Task Analysis,
EUTERPE, Tools.

1. INTRODUCTION
The design of Groupware is a complex activity. Methods for the
design of such complex systems need to address many relevant
aspects of a Groupware system including the users, their tasks and
the software but also the physical and social environment of the
system. Methods from HCI and CSCW literature individually
address some of the relevant aspects but combining their insights
in practice remains difficult. Moreover, the gap between
theoretical ideas on design and applying them in practice is often
large, rendering the theoretical ideas virtually useless. Based on
our experiences in both industrial and educational projects, we
developed a practical method for the design of Groupware.
Despite the fact that we found that a theoretical foundation was
necessary to solve certain problems in the design process, the
method remained very practical. Our method, called DUTCH
(Designing for Users and Tasks from Concepts to Handles), will
be outlined in the next sections. The process, theory and
representations will be discussed.

2. A TYPICAL EXAMPLE:
One of our students has been working in a company that develops
designs for a large international company in IT and electronics
systems. The task domain we were involved in can be
characterized as design of safety and security systems: systems
intended to help protect access and safety in banks, systems that

are used to monitor industrial processes, systems that are applied
for safeguarding railroad traffic. The systems are typical
Groupware systems where the systems are embedded in complex
organizations where people have different roles and
responsibilities.
The company has been providing these types of designs for over
10 years. Currently the company is frequently asked to redesign
existing systems, as well as to design systems for new situations
that resemble situations of systems that are already in use
elsewhere.
Traditionally the company used many different methods and
techniques, each accommodating some aspects of the problem
domain only. However, as many problems were repeatedly
encountered, the company felt it needed a better design method.
On a high level, the company wanted a method that adequately
addressed all phases of design including:
1. Collecting insight in current situations, describing them and

analyzing them. The management of design projects was in
most cases not even aware of the importance of this activity.

2. Considering the future situation in which a new design (or
redesign) would be implemented, including the new system
as well as the new work organization and procedures. Based
on previous experiences, they felt this was necessary to do
early and not after implementation of finished designs into
full blown systems.

3. Relating detailed design of technology back to global
analysis of the intended new work situation. Systematic
evaluation can, when done in time, redirect the detail design
before solutions are completely implemented.

4. Usability evaluation both early and late in a design cycle.
There had always been evaluation procedures, but there has
never been a clear view on what should be evaluated at
which moment in the design cycle. Consequently, evaluation
was driven by the availability of commercial tools and by the
standards set by the clients of design who did not have a
clear view on usability, even though they almost always had
a view on safety and reliability (as far as hardware and
software were concerned).

Since the company was working in design teams the company also
had thoughts on the role of representations, besides being suitable
for Groupware systems. Representations were needed for several
different purposes such as:
- for analyzing design knowledge, where frequently designers

had to collaborate with experts from different disciplines.

 2

- for proposing and discussing global and detail solutions both
internally and externally.

- for evaluation at different phases in the design process.
- for transfer of decisions to implementation, which usually

meant handing over specifications to builders in a different
company.

It was also important for the company that both the process and
the techniques were supported by tools. The tools should support
the designers in controlling the process, iteration and backtracking
of decisions but also for producing solutions, proposals, to be
elaborated by others, or to be analyzed, evaluated and tested.
It was soon clear that there was not one "off the shelf" method that
they could use. Most methods only cover some of the important
aspects and often methods turn out to be difficult to use in
practice.

3. CURRENT TASK BASED APPROCHES
There are several methods that could be used to design
Groupware. Table 1 shows some other task based methods and
their characteristics. Most methods are targeted at several design
activities but only a few address all activities. For use in industry
this is problematic because a combination of methods needs to be
chosen. Additionally, tool support only sparsely exists and most
representations need to be created manually. In some industries,
tool support is considered crucial. Also important is the
availability of suitable representations that scale to real life design
cases. Essential is the possibility to hierarchically structure
diagrams and to highlight several different aspects of the problem
domain or solution.
Table 1 shows that none of the above methods excel in all
categories. As our example illustrates, there is a need for a
practical method that is addresses all the categories. Task based
design approaches have demonstrated their potential but to
advance into the daily practice of industry, several aspects still
need to mature more.
In Table 1, phases are indicated by the numbers used in the
example of the previous section (1 = current work analysis, 2 =
envisioning a new task world, 3 = detailed design, 4 = usability
evaluation). Representation types indicate: H = hierarchy of
concepts of a single type; F = (work/data/process)flow; S =
semantic relations between different concept types; G = formal
grammars.

4. A NEW APPROACH: DUTCH
Since not one method covers all aspects well, we have developed
our own approach, called DUTCH. Over the past years we have
taken useful bits of theories and combined them into a coherent
practical method for designing Groupware. The method has been
used successfully in both industry and education proving the
practical value of the method. From experiences such as outlined
in the example, we learned that for a practical method it is
required to a) define a clear process, b) define the models and
representations including their semantics and c) support the
method and models with tools. In the next sections we will define
each of these requirements and we will show how we are dealing
with those requirements. After this section discussed the general
process, section 5 will discuss the process and representations for
task modeling. Section 6 will discuss detailed design and section

7 discusses the evaluation process in detail. In section 8 tool
support is discussed.
Our design process is task based which means that it uses the
tasks of users as a driving force in the design process. The goals
are to design both usable and useful systems. We think it is
important to base the design on the work that has to be done by
the users. Therefore, the users play an important role in acquiring
knowledge about their work as well as for usability testing.

 Main
process
phases

Domain Tools /
publicly
available

Repr.
types

MAD[10] 1(2) single user yes/no HG
GOMS/
CCT[7]

123(4) single user yes/yes (H)SG

TKS[5] 123(4) multi user no HSG
ConcurTT[9] (1)23 multi user yes/yes HS
HTA[11] (1)23 single user yes/no H
UAN[4] 3(4) multi user no (F)G
TAG/
ETAG[13]

34 single user yes/no SG

CSCW-IA[6] 1(4) group no -
Essential
Use Cases[3]

12 multi user no (H)F

Contextual
Design[2]

1234 multi user No FS

Table 1 Comparison of methods
Our process consists of four main activities: (a) analyzing a
"current" task situation, (b) envisioning a future task situation for
which information technology is to be designed, and (c)
specifying the information technology to be designed. In parallel
to these activities, (d) evaluation activities make the process
cyclic. Figure 1 gives an overview of the whole design process
with all activities and sources of information. In the next sections,
the four main activities will be described in detail.

work
organization/
practice

Client

users’
knowledge/
behavior/needs

Technology

Task Model 1

Task Model 2

Scenario

Simulation

Prototype

Functionality

Dialog

Representation

Implementation

usability
measuring

ethnography

psychological
knowledge
acquisition/
hermeneutics

problem
analysis/
specification

specification/
negotiation

constraints/
opportunities

feedback

specification

early evaluation

early
evaluation

UVM
maintaining
consistency

Documents/
artifacts

validity analysis

Design
 Space

design rationale

 Figure 1 The DUTCH design process

 3

5. GROUPWARE TASK ANALYSIS (GTA)
The design process starts by an extensive task analysis using our
method GTA. We distinguish two task models. The first task
model we make is a descriptive task model and is used for
analyzing the current task situation. The second task model is a
prescriptive task model for the system that is to be designed.

5.1 The Process
5.1.1 Analyzing the current task situation (Task
model 1)
In many cases the design of a new system is triggered by an
existing task situation. Either the current way of performing tasks
is not considered optimal, or the availability of new technology is
expected to allow improvement over current methods. A
systematic analysis of the current situation may help formulate
design requirements, and at the same time may later on allow
evaluation of the design. In all cases where a "current" version of
the task situation exists, it pays off to model this. We use a
combination of classical HCI techniques such as structured
interviews [11] and CSCW techniques such as ethnographic
studies and interaction analysis [6].

5.1.2 Envisioning the future task situation (Task
model 2)
Many design methods in HCI that start with task modeling are
structured in a number of phases. After describing a current
situation (task model 1) the method requires a re-design of the
task structure in order to include technological solutions for
problems and technological answers to requirements. Johnson et
al. (see [5]) provide an example of a systematic approach where a
second task model is explicitly defined in the course of design
decisions. Task model 2 will in general be formulated and
structured in the same way as the previous model, but in this case
it is not considered a descriptive model of users' knowledge,
although in some cases it might be applied as a prescriptive model
for the knowledge an expert user of the new technology should
possess.

5.2 Representations
5.2.1 A Conceptual Framework
For describing the task world, we developed a broad conceptual
framework that is based on comparisons of different approaches
and on an analysis of existing and proposed systems for HCI and
CSCW (see [15]). When designing Groupware systems it is
necessary to widen the notion of a task model to include
descriptions of many more aspects of the task world than just the
tasks. The framework as such is intended to structure task models
1 and 2, and, hence, as a guidance for choosing techniques for
information collection in the case of task model 1. Obviously, for
task model 2 design decisions have to be made, based on
problems and conflicts that are represented in model 1, in
combination with requirement specifications as formulated in
interaction with the client of the design. For a discussion of these
design activities, see [15].
Task models for complex situations need to be composed of three
different aspects: agents, work, and situation. Each describes the
task world from a different viewpoint, and each relates to the
others. This will allow designers to read and to design from
different angles, while design tools can be used to guard

consistency and completeness. The three viewpoints that we will
apply in our approach are a superset of the main focal points in
the domain of HCI as well as CSCW. Both design fields consider
agents (‘users’ vs. ‘cooperating users’ or user groups) and work
(activities or tasks, respectively the objectives or the goals of
‘interaction’ and the cooperative work). Moreover, especially
CSCW stresses the situation in which technological support has to
be incorporated. In HCI this is only sometimes, and then mostly
implicitly, considered. In this section we will briefly mention our
conceptual framework.
Agents
The first aspect focuses on agents. "Agents" often indicates
people, either individuals, groups, but may also refer to systems.
Agents are considered in relation to the task world, hence, we
need to make a distinction between actors, as acting individuals or
systems, and the roles they play. Moreover, we need the concept
of organization of agents. Agents have to be described with
relevant characteristics (e.g. for human actors the language they
speak, the amount of typing skill or experience with MS-
windows). Roles indicate classes of actors to whom certain
subsets of tasks are allocated. By definition roles are generic for
the task world. More than one actor may perform the same role,
and a single actor may have several roles at the same time.
Organization refers to the relation between actors and roles in
respect to task allocation. Delegation and mandating
responsibilities from one role to another is part of the
organization.
Work
We consider both the structural and the dynamic aspect of work,
so we take task as the basic concept and each task can have
several goals. We also make a distinction between tasks and
actions. Tasks can be identified at various levels of complexity.
The unit level of tasks needs special attention. We need to make a
distinction between (1) the lowest task level that people want to
consider in referring to their work, the ‘unit task’ (Card, Moran,
and Newell, [1]); and (2) the atomic level of task delegation that
is defined by the tool that is used in performing work, like a single
command in command driven computer applications. This last
type of task we will call ‘Basic task’ (Tauber, [12]). Unit tasks
will often be role-related. Complex tasks may be split up between
actors or roles. Unit tasks and basic tasks may be decomposed
further into user actions and system actions, but these cannot
really be understood without a frame of reference created by the
corresponding task, i.e., actions derive their meaning from the
task. For instance hitting a return key has a different meaning
depending on whether it concludes a command, or confirms the
specification of a numerical input value in a spreadsheet.
The task structure will often at least partially be hierarchical. On
the other hand, resulting effects of certain tasks may influence the
procedures for other tasks (possibly with other roles involved).
Therefore, we will also need to understand task flow and data
flow over time as well as the relation between several concurrent
flows. A special concept is event, indicating a triggering
condition for a task, even if the triggering could be caused by
something outside the task domain we are considering.
Situation
Analyzing a task world from the viewpoint of the situation means
detecting and describing the environment (physical, conceptual,

 4

and social) and the objects in the environment. Object description
includes an analysis of the object structure. Each thing that is
relevant to the work in a certain situation is an object in the sense
of task analysis, even the environment is an object. In this
framework, "objects" are not defined in the sense of "object
oriented" methods. Objects may be physical things, or conceptual
(non-material) things like messages, gestures, passwords, stories,
or signatures. The task environment is the current situation for the
performance of a certain task. It includes actors with roles as well
as conditions for task performance. The history of past relevant
events in the task situation is part of the actual environment if this
features in conditions for task execution.

5.2.2 The Base: The Task World Ontology
In order to put the theory into practice, the three viewpoints have
been expressed in a task world ontology[18]. The ontology
defines the basic concepts and relationships between them that we
regard relevant for the purpose of a task analysis. Basic, in this
case, indicates that we are able to describe all other relevant
concepts and relations by using the basic concepts and relations.
The ontology is of importance because it is the conceptual basis of
all information that is recorded and the way it is structured and
may be represented. Our ontology is derived from the three
viewpoints from GTA and incorporates the relevant aspects of
several other task analysis methods.
Relationships
The basic concepts from GTA (task, object, agent, role and event)
are related in specific ways. In this section, we sketch the
relationships that we are using now. For each relationship the
first-order predicate definition is given and explained. Figure 2
shows all the concepts and relationships. The set of relationships
have in practice shown to be sufficient for dealing with most
design cases. Keep in mind that there are other relationships in
our ontology that allow the representation of the additional
concepts (e.g., tasks have attributes like complex/unit/basic, and
like start and stop conditions). For a complete specification of our
ontology, see [17].

• Uses. The uses relationship specifies which object is used in
executing the task and how it is used. The uses relationship
typically changes the state of the object.

• Triggers. The triggers relationship is the basis for specifying
task flow. It specifies that a task is triggered (started) by an
event or a task and how it is triggered. Several trigger types
are possible such as OR, AND, NEXT to express choice,
parallelism or sequences of tasks.

• Plays. Every agent should play one or more roles. The plays
relationship also indicates how this role was obtained. For
instance by delegation, mandate or a socially determined
reason.

• Performed_by. The relationship performed by specifies that
a task is performed by an agent. This does not mean that
agent is also the one who is responsible for the task because
this depends on his role and the way it was obtained. When it
is not relevant to specify the agent that performs the task, a
role can also be specified as the performing entity.

• Has. The has relationship connects tasks to goals. Each task
has a goal that defines the reason for performing the task. A
goal could be either a personal or business goal.

• Subtask/Subgoal. The subtask/subgoal relationship
describes the task/goal decomposition.

• Subrole. The subrole relationship brings roles into a
hierarchical structure. The subrole relationship states that a
role includes other roles including the responsibility for the
task that encompass the role. When a role has subroles the
task responsibilities are added up for the role.

• Responsible. The responsible relationship specifies a task
for which the role is responsible.

• Used_by. The used by relationship indicates who used which
object and what the agent or role can do with it. The agents'
rights regarding objects can be of existential nature, indicate

ownership, or indicate daily handling of objects.

Task Agent

Role

Event

Object Contains

Responsible

Performed_by

Plays

Triggers

Subtask

Uses

Triggers

Used_by

Subrole
Is

Performed_by

Goal

Has

Subgoal
 Figure 2 Task World Ontology

5.2.3 Representations for Task Models
Our experiences have shown us that representations for task
models are very important for the effectiveness of your task
analysis. Design projects are often done in teams and effectiveness
often depends on the ability to communicate the gathered
knowledge. Task modeling is concerned with collecting task
related knowledge and that knowledge needs to be documented.
For task modeling more than one representation is needed to
capture all important aspects. Similar to the work models of
Contextual Design [2] we have built a set of "views" that are
needed to describe the relevant aspects of the task world. The
views we identified resemble the work models of Contextual
Design, but we have developed our representations to be able to
deal with large real world design cases. Although the
representations have become more complex, our experience
showed that simple models were often just not effective enough.
The ontology is used for the abstract structure of the data and
allows various representations that can be regarded as views on
this data. Each representation usually shows a particular aspect of
the information. Figure 3 shows some of the representations that
we use and for which we have implemented tool support. In the
top-left corner a work flow editor is shown. At the bottom, a task
tree and task template is shown.

 5

5.2.4 Representing Work Structure
The purpose of modeling the work structure is to represent how
people divide their work into smaller meaningful pieces in order
to achieve certain goals. Knowing the structure of work allow the
designers to understand how people think about their work, to see
where problems arise and how tasks are related to the user’s goals.
The relation between tasks and goals helps the designers to
choose which tasks need to be supported by the system and why
i.e. which user goals are independent of the technology used.
Work structure is usually represented using task trees that show a
hierarchical decomposition of the work. In a task tree, we make a
distinction between tasks and goals. Often some timing

information is added using constructors such as SEQ, LOOP,
PAR and OR. The constructors cannot always be used especially
when the task sequence uses a combination of sequential and
optional tasks [18]. Details of the task can effectively be described
using templates we developed. Details include the state changes,
frequency and duration, triggering and start/stop conditions.

5.2.5 Representing Work Dynamics
Work dynamics involve the sequence in which tasks are
performed in relation to the roles that perform them. Workflow or
Activity models are needed to capture these aspects and should
include the possibility to model parallel and optional tasks. Such
workflow diagrams usually describe a scenario or use case. A

Figure 3 Some representations including a task tree, task flow, and a task template

 6

scenario is triggered by some event and usually starts with some
important goal being activated. The scenario usually ends when
the goal is achieved but other goals may have been activated in
the course of tasks and may not be reached yet. This way work
dynamics can be modeled is an event driven way. In case studies
such as [16] it turned out that this event driven dynamic aspect of
cooperative work can be very important.
Another important aspect in work dynamics is collaboration and
communication. Especially when multiple roles are involved in a
certain task, timing and changes in control are essential to model.
Roles pass objects when they communicate or collaborate which
cannot be represented well by a task tree. A work flow model can
show work in relation to time and roles. The model gives the
designer insight in the order in which tasks are performed and
how different people are involved in them. Additionally, it can
show how people work together and communicate by exchanging
objects or messages. Typically, a flow model describes a small
scenario involving one or more roles. This way, it shows how
work is interleaved.
Figure 4 shows a variation of the UML Activity diagram that we
use to model work dynamics. The Activity diagram focuses on
how roles work together is tasks and how they communicate and
collaborate. Additionally, goals and event are included to
facilitate deeper analysis. With each task a new goal can become
active until it is reached in a later task.

5.2.6 Representing Tools and Artifacts
The work environment itself usually contains many objects (a
hundred or more is not unusual) some of which are used directly

in tasks and other that may be “just lying around”. The objects
can be tools that people use either in software or in hardware but
other objects may be directly manipulated in tasks. For some of
these objects it may be relevant to describe them in detail. Details
may include their structure, their type, and object specific
attributes. For the object structure and type we use class diagrams
but without the OO-specific parts such as methods. Using
templates the other task details are describes, such as the relations
with their users and their specific attributes.

5.2.7 Representing the Work Environment
In the past, most task analysis methods focused on modeling one
user and that user’s tasks. However, in current applications group
aspects are becoming more important. Classic task modeling
methods lack the power to deal with these situations, modeling
only the static part of the task world by identifying roles. This
neglects other parts of the organization and dynamic aspects of the
task world. People rarely perform their work in solitude. They
work together with their colleagues and share offices, they help
each other and form a social group.
One aspect of the work environment is the actual physical layout.
How big is the room? Where are objects positioned and what are
their dimensions? Pictures, drawings, maps and video clips can
capture parts of this information. Usually maps or drawings are
annotated with comments relating to their impact on the work
such as reachability of objects. Most objects that appear in such
representations are also represented when modeling Tools and
Artifacts.

Book Seller Teacher Financial Administrator

Choose a BookChoose a Book

Check BudgetCheck Budget

Receive BookReceive Book Receive BillReceive Bill

Register PurchaseRegister Purchase

Pay BillPay Bill

Process OrderProcess Order

Order BookOrder Book

New Term

Get a book

Maintain Budget

Keep Inventory

Pay Bills

order

book

request

bill

Goal Lane Event Lane

Figure 4 An example of a Flow diagram

 7

Every work environment also has its own culture which defines
the values, policies, expectations, and the general approach to
work. The culture determines how people work together, how they
view each other socially and what they expect from each other.
Taking the culture into account for UID may influence decisions
on restructuring of work when rearranging roles or their
responsibilities. Roles are usually used to describe the formal
work structure extended with some ”socially defined” roles. In
practice, roles such as ”management” or ”marketing” influence
each other and other roles. These kinds of influence relationships
are part of the work culture. Describing work culture is not
straightforward but at least some influence relationships and their
relative strengths can be modeled. Other aspects of culture
include policies, values and identity.

5.3 Integrated Representations
When multiple representations are used, it is important to
integrate these representations. We therefore defined each
representation as a view on the data that is structured by our
ontology. This way, concepts can appear in several
representations at the same time without confusing about the
semantics of the representations. For instance, a task is only
specified once but can be part of, both, a task tree, a task flow
representation, and a role template. Our tools can help designers
using different representation while guarding consistency between
the representations. Using our tool the ontology remains hidden
within the tool and designers are just editing representations. This
way representations are "integrated" without extra effort from
designers. The tool saves time and designers can concentrate on
modeling rather than editing activities.
Besides representations based on the ontology we also capture
data from ethnographic studies. This data includes video
fragments, sound clips and images of objects. Using our tool, this
data is linked to one or more of the concepts of the ontology. For
instance, a short video clip can give an impression of how the

work is actually done in the current situation. We will discuss
tools more in the section on supporting the design process.

6. DETAILED DESIGN, THE UVM
6.1 The Process
After the task modeling activity the actual Groupware system
needs to be designed and specified. Task model 2 gives the
envisioned task world where the new system will be situated.
From there, the details of the technology and the basic tasks that
involve interaction with a Groupware system need to be worked
out. This activity consists of three sub-activities that are strongly
interrelated: specifying of the functionality, structuring the dialog
between the users and the system, and specifying the way the
system is represented to the user.
This activity is focused on a detailed description of the system as
far as it is of direct relevance to the end-user. We use the term
User Virtual Machine [12](UVM) to indicate the total of user
relevant knowledge of the technology, both semantics (what the
system offers the user for task delegation) and syntax (how task
delegation to the system has to be expressed by the user). This
resembles Constantine’s intention with essential modeling where
he emphasizes modeling the tasks of the users without using
particular technology solutions. In actual design, frequent
iterations will be needed between the specifications of the tasks
models and the UVM specifications. This iteration is an explicit
part of the method and essential for the development of usable
systems.
When making the transition from task model 2 to designing the
UVM, the tasks and the objects determine to first sketch of the
application. The task or object structure is used to create the main
displays and navigational structure. From there on, the iterative
refinement process takes off.

Figure 5 An editor for UAN diagrams

 8

6.2 Representations for Detailed Design
For representing the dialog structure we developed a variation of
User Action Notation [4]. UAN diagrams describe the dialog
between the user and the system. Constantine's Essential Use
Cases are very similar but miss the possibility to describe the link
with the internal functionality. Our variant of UAN includes
extensions that allow event-driven behavior to be specified more
easily and extensions for describing mental actions and
preconditions. In addition to the UAN diagrams sketches of
screen designs are used to show their representation. We found
that using UAN diagrams without sketches was not desirable. The
UAN diagrams describe the dialog and part of the functionality
while sketches cover the presentational aspects of the UVM.
We use a revision of UAN which we explicitly related to the task
world ontology as shown in Figure 6. A basic task is decomposed
in interactions which in turns are further described by a sequence
of timeslots. The timeslots contain actions of both the user and the
system and states describing the interface state or the application's
state. Concerning actions of the user, we make a distinction in
physical and mental actions. Physical actions are actions that are
"steps" in the dialog structure. Mental actions are cognitive
actions that the user performs. Mental actions are included to
evaluate knowledge the user needs to access, possible from the
system's screen or other, past or current output. Again, designers
are not confronted with the ontology directly but our tools use it
to link concepts together. The designer only perceives it in the
tool's functionality.
In order to facilitate the transition from a task model to the
specification of the UVM, our tool can link a task model with a
UAN model. The basic tasks of a task model then become the top-
level interactions in a UAN diagram. This way, it becomes more
visible which tasks are supported in the UAN specification.
The three detail design aspects (functionality, dialog and
representation) are mutually dependent and it is necessary to keep
the models consistent. In addition, all the design decisions need to
be documented. We use the QOC [8] method to record the design
space and the rationale for design decisions. At the moment,
support for design rationale has not been integrated in our tools.

triggers

uses

Dialog Model

Task
Model 2

contains contains

contains
containscontains

represents represents

Basic
Task

Task
Event

Task
Object

Action

System
ObjectInteractionSystem

Event

Timeslot

State

Figure 6 Ontology for linking task models and UAN

7. EVALUATION AND USABILITY
TESTING
During the entire process, some kind of evaluation activity can
take place. As soon as an initial task model is available it can
already be evaluated using scenario's and use cases. Later on
when some initial sketches for the new system are known,
mockups and prototypes can be used for early evaluation of
design concepts. Each evaluation activity can cause another
iteration. For instance, a task model may turn out to be incomplete
after a mockup is evaluated in a critical scenario. In that case the
designers need to go back to the task model and rethink their
model.
Only if a part of the design is worked out in detail we can begin
usability testing with a prototype and users. Early evaluation can
be done by inspecting design specifications or by performing
walkthrough sessions with designers and/or users. For early
evaluation, we developed a usability framework [19], see Figure
7.
On the highest level, the ISO definition of usability is followed
that gives three pillars for looking at usability that are based on a
well-formed theory[1]. The next level contains a number of usage
indicators that can actually be observed in practice when users are
at work. Each of these indicators contributes to the abstract
aspects of the higher level. For instance, a low error-rate
contributes to a better effectiveness and good performance speed
indicates good efficiency and hence it can be an observable goal
for design. The usage indicators are measured using a set of
usability metrics
One level lower is the level of means that can be used in
"heuristics" for improving one or more of the usage indicators and
are consequently not goals by themselves. For instance,
consistency may have a positive effect on learnability and
warnings may reduce errors. On the other hand, high adaptability
may have a negative effect of memorability while having a
positive effect of performance time.
Each means can have a positive or negative effect on some of the
indicators. The means need to be "used with care" and a designer
should take care not to apply them automatically. The best
usability results from an optimal use of the means where each
means is at a certain "level", somewhere between "none" and
"completely/ everywhere/all the time". In order to find optimal
levels for all means, the designer has to use the three knowledge
domains (humans, design, and task). For example, design
knowledge like guidelines, should include how changes in use of
the means affect the usage indicators.

7.1 Improving Usability
When evaluation shows that the usability needs to be improved
the problem is to find out which means need to be changed and
how they need to be changed. As was mentioned earlier, means
could sometimes have a positive effect on one usage indicator
while having a negative effect on another. In some cases, the
designer has to take a step back and look at the knowledge
domains again. For instance, when the task conformance is seen
as a problem the task model can give the designer information
about what is wrong with the task conformance. Similarly, the
user model may give information about the memory limitations
which may require the design to have more or better feedback of

 9

user actions. Obtaining such extra data may require the task model
to be extended to include previously undescribed data.

8. SUPPORTING THE DESIGN PROCESS
Tools help to structure the process of design and aid designers to
understand their data. Representations and diagrams are an
integral part of many methods. Tools that allow these
representations to be edited help reduce design costs and time. A
problem of many tools is their availability. Many methods from
academia refer to tools that support the method but in reality these
tools are usually not publicly available and are not developed far
enough in order to be of any practical use.
Our tool EUTERPE was developed to support the process that is
outlined in the previous sections. It is in constant development in
reaction to comments of users 'in the field' and is freely available
to anyone. The tool has been used for several years in both
industry and education. The tool was designed to deal with
multiple representations and it is therefore explicitly based on the
ontology that semantically links representations.

8.1 Deriving representations
The ontology only defines a structure for the task model data and
does not limit or dictate any representation. The tool is based on a

repository that contains the data of a design project. All
representations are views on the repository. The task world
ontology is specified in a logic programming language (Prolog)
and is the main data structure for the repository. EUTERPE offers
several different representations and all the representations are
coherent because each representation is build up on the fly out of
the same information specified using the ontology. For instance, a
task tree representation does not exist in the logical model but the
structure is derived from the specified Subtask relationships of
tasks. By issuing queries to the Prolog engine, all the relationship
can be inspected. Naturally, EUTERPE allows most representations
to be modified as well in which case the views need to assert the
right facts in the Prolog engine. For instance when a new subtask
is added by editing the task tree view, a new fact subtask(X,Y) is
asserted. This way the users of EUTERPE can work with the
representations without having to deal with the logic
representation underneath.
The current version of Euterpe supports representations for task
modeling and UAN diagrams. Hierarchical structures and
templates can be created for all concepts. Additionally, the models
can be analyzed semi-automatically [17].

Effectiveness Satisfaction

Learnability Satisfaction

MemorabilityPerformance Speed

Errors/Safety

Consistency Feedback

Warnings

Shortcuts
Undo

Task Conformance

EfficiencyUsability

Usage Indicators

Means

User Model Task ModelDesign KnowledgeKnowledge

Flexibility

has an impact on
is a source for improving

Grouping

Task Completion

Figure 7 A Usability Framework

 10

8.2 Documenting a Task Analysis
EUTERPE has two ways of producing documentation. First of all by
using the printing functionality. Task trees and object hierarchies
as well as lists of events and agent can be printed. If a tree does
not fit on one sheet of paper printing is automatically done tiled
on multiple pages. The second way of producing documentation
is by exporting the specification to HTML. EUTERPE can generate
a set of HTML pages including an applet containing a task tree
that allows browsing of the task analysis results, see Figure 8. As
a result these pages are a "read-only" view of the model since
changes are not propagated back to the Prolog engine. All the
pages together can be seen as a hyperlinked task analysis
document because for each concept that is referenced a hyperlink
is added. For instance, a reference to an object used in a task
becomes a link to the description of that object and vice versa.
Links to images and video fragments are also generated. For
navigation purposes and for getting a better overview a simple
Java applet is also included. The applet shows the trees
graphically and when a node is selected the browser jumps to the
corresponding entity. When large design teams actually used
EUTERPE, the produced HTML documents were put on a web-

server and these constituted the main reference document for the
other members of the design team.
Another important aspect is the integration with common office
applications. Designers typically write reports in which they need
to include some of the design representations such as task trees of
parts of UVM specifications. A tool must therefore be able to
produce output in formats that can be used in typical office
applications. In EUTERPE we use Windows Metafiles are exchange
format for representations. Such representations can be arbitrarily
scales or modified in office applications.

9. DUTCH IN USE
DUTCH has been used in several projects over the last few years
in Europe, both in industry [14,16] and in education. In
educational context the method is taught to Computer Science and
Psychology students at four Dutch universities and two Romanian
universities as well as in the Open University in the Netherlands.
One of the things we learned was that it is considered valuable to
explicitly use a method that structures the design process from
task analysis to usability testing. For designers it gives them a
structure for activities and it contributes positively when

Figure 8 Generated HTML output with applet showing a task tree and task templates

 11

negotiating with higher management, for example for getting
support for data gathering activities.
During the analysis phase the GTA conceptual framework proved
to be of great value. It worked as a kind of 'check-list' to focus
attention to things that matter in performing tasks. Some activities
such as ethnographic studies and interaction analysis are often
new to analysts but after the initial hurdle the benefits are clear. It
helps creating a common vocabulary and simplifies discussions.
The representations have been evolving a lot but they now seem
to be powerful enough for practical use. However, tool support is
essential for creating and managing these representations. Because
of the required iterations in the design process, the tools save
designers a lot of time. When using our tool we saw that it was
important to keep editing functionality simple so that the more
advanced features are not directly visible.
However, what sometimes remains difficult is the 'awareness’ in
the company of what it means to perform task analysis at the
customer site and how it should be integrated in the already
present system design culture. To the majority of traditional IT-
personal and organisations it is radically new. It takes time to let
this awareness grow by (partly) applying the method in current
projects.

10. DISCUSSION
Although design methods exist that claim to cover similar design
aspects, we found that an integrating method is what many
designers ask for. In comparison to other design approaches like
the ones mentioned in Table 1, our approach differs on three main
points:
- DUTCH uses multiple representations integrated through use

of an ontology. The representations have been used
frequently and have proven to be sufficient for most design
cases.

- DUTCH has a wider scope than most other methods ranging
from initial task analysis and envisioning to detailed design
and evaluation. It considers both multiple and individual
users.

- DUTCH is supported by tools that are publicly available and
tested in practice.

An integrated method is desirable when the method is applied in
practice and consequently the gap between theory and practice is
reduced. For example, when we work together with industry we
found that having tool-support is an important issue. Being able to
manage to data and design representations using a tool can save a
lot of time. Such benefits contribute when higher management
needs to be convinced that it is important to do structured task-
based design.

11. CONCLUSIONS
We have outlined an approach for task based Groupware design
that combines known theoretical insights into one coherent and
practical method. The method is used in several countries in
Europe both in industry and education. The method defines a
clear process, models and representations to be used and tools that
support the design process.

12. REFERENCES
[1] Bevan, N. (1994), Guidance on Usability, ISO 9241-

11 Ergonomic Requirements for Office Work With
VDTs..

[2] Beyer, H. and Holtzblatt, K. (1998), Contextual
Design, Morgan Kaufmann Publishers.

[3] Constantine, L. L. and Lockwood, L. A. D. (1999),
Software for Use, Addison Wesley.

[4] Hix, D. and Hartson, H. R. (1993), Developing User
Interfaces : Ensuring Usability Through Product &
Process. John Wiley & Sons, Inc.

[5] Johnson, P., Johnson, H., Waddington, R. and Shouls,
A. (1988), Task-Related Knowledge Structures:
Analysis, Modeling and Application, in: Jones, D. M.
and Winder, R., People and Computers IV pp. 35-62,
University Press, Cambridge.

[6] Jordan , B. (1996), Ethnographic Workplace Studies
and CSCW, in: D. Shapiro, M. J. Tauber and R.
Traunmueller, The Design of Computer Supported
Cooperative Work and Groupware Systems , North-
Holland, Amsterdam.

[7] Kieras, D. and Polson, P.G. (1985), An approach to the
formal analysis of user complexity, International
Journal of Man-Machine Studies, vol 22, no. 365-394.

[8] MacLean, A., Young, R., Bellotti, V. and Moran, T.
(1991), Questions, options, and criteria: elements of
design space analysis., Human Computer Interaction,
vol 6, no. 3 & 4, pp.201-250.

[9] Paterno, F. D., Mancini, C., and Meniconi, S. (1997),
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models, Proceedings of Interact '97,
Sydney, Chapman & Hall.

[10] Scapin, D. and Pierret-Golbreich, C. (1989), Towards
a method for Task Description: MAD, in: Berlinguet,
L. and Berthelette, D., Work With Display Units 89 ,
Elsevier, Amsterdam.

[11] Sebillotte, S. (1988), Hierarchical planning as a
method for task-analysis: the example of office task
analysis, Behaviour and Information Technology, vol
7(3), no. 275-293.

[12] Tauber, M.J. (1988), On mental models and the user
interface, in: van der Veer, G. C., Green, T. R. G.,
Hoc, J-M., and Murray, D., Working With Computers:
Theory Versus Outcome , Academic Press, London.

[13] Tauber, M. J. (1990), ETAG: Extended Task Action
Grammar - a language for the description of the user's
task language, Proceedings of INTERACT '90,
Amsterdam, Elsevier, Amsterdam.

[14] van der Veer, G. C., Hoeve, M., and Lenting, B. F.
(1996), Modeling complex work systems - method

 12

meets reality , 8th European Conference on Cognitive
Ergonomics (EACE) , Inria, Le Chesnay cedex.

[15] Van der Veer, G. C., van Vliet, J. C., and Lenting, B.
F. (1995), Designing complex systems - a structured
activity, DIS'95, Symposium on Designing Interactive
Systems, ACM Press, New York.

[16] van Loo, Reinard, van der Veer, G. C., and van Welie,
M. (1999), Groupware Task Analysis in Practice: a
scientific approach meets security problems, 7th
European Conference on Cognitive Science
Approaches to Process Control , Villeneuve d'Ascq,
France .

[17] van Welie, M., van der Veer, G. C., and Eliëns, A.
(1998), Euterpe - Tool support for analyzing
cooperative environments, Ninth European Conference
on Cognitive Ergonomics, Limerick, Ireland.

[18] van Welie, M., van der Veer, G. C., and Eliëns, A.
(1998), An Ontology for Task World Models,
Proceedings of DSV-IS98, Abingdon UK, Springer-
Verlag, Wien.

[19] van Welie, M., van der Veer, G. C., and Eliëns, A.
(1999), Breaking down Usability, Proceedings of
Interact '99, Edinburgh, Scotland.

	INTRODUCTION
	A TYPICAL EXAMPLE:
	CURRENT TASK BASED APPROCHES
	A NEW APPROACH: DUTCH
	GROUPWARE TASK ANALYSIS (GTA)
	The Process
	Analyzing the current task situation (Task model 1)
	Envisioning the future task situation (Task model 2)

	Representations
	A Conceptual Framework
	The Base: The Task World Ontology
	Representations for Task Models
	Representing Work Structure
	Representing Work Dynamics
	Representing Tools and Artifacts
	Representing the Work Environment

	Integrated Representations

	DETAILED DESIGN, THE UVM
	The Process
	Representations for Detailed Design

	EVALUATION AND USABILITY TESTING
	Improving Usability

	SUPPORTING THE DESIGN PROCESS
	Deriving representations
	Documenting a Task Analysis

	DUTCH IN USE
	DISCUSSION
	CONCLUSIONS
	REFERENCES

