Groupware Task Analysis

Gerrit C. van der Veer, Martijn van Welie

Department of Computer Science, Vrije Universiteit
de Boelelaan 1081a, 1081HV Amsterdam, The Netherlands
{martijn, gerrit}@cs.vu.nl
http://www.cs.vu.nl/~martijn/gta/

Abstract
Groupware Task Analysis is a task analysis method that deals with the context of use of a system
in the broadest sense. The task world is seen from three viewpoints that deal with different aspects
of the world. The processes of GTA and their background are described in detail. In addition a task
analysis tool EUTERPE is described. EUTERPE is based on GTA and allows capturing of the task
models and provides some basic analysis primitives.

1. INTRODUCTION

Analyzing a complex system means analyzing the world in which the system functions, or the "context of use",
which comprises (according to standards like [1])

- the users;

- the tasks;

- the equipment (hardware, software, and materials);

- the social environment;

- the physical environment.

If we want to design systems for the context of use, we need to take these different aspects of the task world into
consideration. In traditional literature on task analysis from the HCI (Human-Computer Interaction) mainstream,
the focus is mostly on users, tasks, and software. Design approaches for GroupWare and CSCW (Computer
Supported Collaborative Work), on the other hand, often focus on analyzing the world first of all from the point of
view of the (physical and social) environment. In both cases, more recent developments at least include some
aspects that belong to the other categories, but it still looks like one has to choose for either the one view or the
other. Section 2 presents an idea of task analysis approaches from the classical HCI tradition, and, at the same
time, provides our view on phases in task analysis. In Section 3 an ethnographic viewpoint, as frequently applied
to the design of CSCW systems, is presented, where phases in the analysis process are hardly considered. As the
result of combining approaches from both HCI and CSCW design, we developed our GTA (Groupware Task
Analysis) framework of modeling task knowledge, which we will describe in section 4. Brigitte Jordan [2], though
originally working from an ethnographic approach and focusing on GroupWare applications, provides a view on
analyzing knowledge of the task world that is broad enough to cover most of the context of use as now defined by
the above mentioned 1SO document. We will illustrate Jordan’s view in Section 5, distinguishing two factors:

- sources of knowledge: (1) individual knowledge, and (2) group;

- levels of communicability: (a) explicit, and (b) implicit.

Based on applying Jordan's 2 * 2 framework in actual design processes for large industrial and government
interactive systems, and expanding the two factors from dichotomies to continuous dimensions, we describe a two-
dimensional framework to analyze the different relevant sources of knowledge of the context of use. This
framework provides a map of knowledge sources, that assists us to identify the different techniques that we might
need in order to collect information and structure this into a model of the task world. Section 6 describe EUTERPE,
a task analysis tool based on an ontology derived from GTA. The model used by the tool and how the resulting
task models can be analyzed is described in section 7.

2. TASK ANALYSIS IN HCI DESIGN

Classical HCI features a variety of notions regarding task analysis. The concept is used to indicate different
activities: (a) analyzing a "current™ task situation, (b) envisioning a task situation for which information technology
is to be designed, or (c) specifying the semantics of the information technology to be designed. Figure 1 gives an
overview of the whole design process with all activities and sources of information.

Many HCI task analysis methods combine more than one of these activities and relate them to actual design stages
(e.g., [3]). On the other hand, some authors do not bother about the distinction. GOMS (Card, Moran, and
Newell,[4]) can be applied for any of them or a combination.

http://www.cs.vu.nl/~martijn/

2.1 Analyzing the current task situation (Task model 1)

In many cases the design of a new system is triggered by an existing task situation. Either the current way of
performing tasks is not considered optimal, or the availability of new technology is expected to allow improvement
over current methods. A systematic analysis of the current situation may help formulate design requirements, and
at the same time may later on allow evaluation of the design. In all cases where a "current" version of the task
situation exists, it pays of to model this. Sebillotte (see [5]) elaborates a method to collect task knowledge and
structure this into a hierarchical model of subtasks, Scapin and Pierret-Golbreich (in [6]) elaborate on this method
and provide an object oriented formalism for modeling knowledge of existing task situations, like Sebillotte mainly
focusing on activities. Task models of this type pretend to describe the situation as it can be found in real life, by
asking or observing people who know the situation (e.g.,[7]). Task model 1 is often considered of a generic nature
(e.g., [5]), indicating the belief of authors in this field that different expert users have at their disposal basically the
same task knowledge.

2.2 Envisioning the future task situation (Task model 2)

Many design methods in HCI that start with task modeling are structured in a number of phases. After describing a
current situation (task model 1) the method requires a re-design of the task structure in order to include
technological solutions for problems and technological answers to requirements. Johnson et al. (see [3]) provide an
example of a systematic approach where a second task model is explicitly defined in the course of design
decisions. Task model 2 will in general be formulated and structured in the same way as the previous model, but in
this case it is not considered a descriptive model of users' knowledge, although in some cases it might be applied as
a prescriptive model for the knowledge an expert user of the new technology should possess.

work

organization/ ethnography
practice

users’ /
knowledge/

psychological

Documents/
artifacts

validity analysis

Task Model 1

problem

behavior/needs knowledge analysis/
1 acquisition/ specification
hermeneutics specification/
usability negotiation
measuring Task Model 2

constraints/
opportunities

Technology

maintaining
consistency

Representation

Implementation

Figure 1 The design proces

2.3 Specifying technology (The user's virtual machine)

The third type of modeling activity that may be found in HCI design focuses on the technology to be designed. In
principle this might be considered part of task model 2 (e.g., [4] in the case of GOMS). However, in other HCI
approaches the actual design activities focus on the technology as such (e.g., [8]). In this part of design the activity
is focussed on a detailed description of the system as far as it is of direct relevance to the end-user. Oberquelle (see
[9]) introduces the concept "virtual machine” to indicate "the functionality of the system ... where implementation
details and details of the underlying hardware are suppressed”. Tauber ([10]) elaborates the concept of the user's
virtual machine (UVM) which indicates the total of user relevant knowledge on the technology, both semantics
(what the system offers the user for task delegation) and syntax (how task delegation to the system has to be
expressed by the user). We will borrow the Term UVM to separate the design of technology (as far as relevant to
the end-user) from the design of the "new" task situation as a whole, mainly because the UVM models the detailed
solution in terms of technology, where task model 2 focuses on the task structure and work organization. In actual
design iteration will be needed between the specification of these two models, which should be an explicit activity,
making the implications of each obvious in its consequences for the other.

2.4 HCI task models represent a restricted point of view

All HCI task modeling is rather narrow focused, considering mainly individual people's tasks, although Johnson
(e.g., [7]) considers the aspect of roles and the phenomenon of allocating subtasks to different actors. Most HCI
approaches are based on cognitive psychology. Johnson refers to knowledge structures in long term memory.
Tauber refers to "knowledge of competent users”. HCI approaches focus on knowledge as can be modeled after
individuals who are knowledgeable or expert in the task domain, whether this domain already exists (task model 1)
or still has to be re-structured by introducing new technology (task model 2 and the UVM).

As a consequence of their source, HCI models seldom provide an insight in complex organizational aspects, in
situational conditions for task performance, and in complex relations between tasks of individuals with different
roles. Business processes and business goals are seldom part of the knowledge of individual workers, and,
consequently, are seldom related to the goals and processes as found in HCI task modeling.

3. DESIGN APPROACHES FOR CSCW

CSCW work stresses the importance of situational aspects, group phenomena and organizational structure and
procedures (Schael, [11]; Shapiro, [12]). Shapiro even goes as far as stating that HCI has failed in the case of task
analysis for cooperative work situations, since generic individual knowledge of the total complex task domain does
not exist. CSCW literature strongly advocates ethnographic methods.

3.1 Ethnography

Ethnographers study a task domain (or "community of practice") by becoming a participant observer, if possible
with the status of an apprentice, being accepted as an outsider in this respect and being themselves aware of their
status of analyzing observer. The ethnographer observes the world "through the eyes of the aboriginal™ and at the
same time is aware of his status of an outside observer whose final goal is to understand and describe for a certain
purpose and a certain audience (in the case if CSCW: a design project). Ethnographers start their observation
purposely without a conceptual framework regarding characteristics of task knowledge, but, instead, may choose
to focus on activities, environments, people, or objects. The choice of focus is itself based on prior ethnographic
observations, which illustrates the bootstrapping character of knowledge elicitation in ethno-methodology.
Methods of data collection currently start with video recording of relevant phenomena (the relevance of which,
again, can only be inferred from prior observation) followed by systematic transaction analysis, where inter-
observer agreement serves to improve reliability of interpretation. Knowledge of individual workers in the task
domain may be collected as far as it seems to be relevant, but it is in no case a priori considered the main source,
and will never be considered indicative for generic task knowledge.

3.2 The scope of ethnography

The ethnographic approach in unique in its attention to all relevant phenomena in the task domain that are not
explicitly verbalizable by (all) experts (see [13]). The approach attends to knowledge and intentions that are
specific for some actors only, conflicting goals, cultural aspects that are not perceived by the actors in the culture,
temporal changes in beliefs, situational factors that are triggers or conditions for strategies, and non-physical
objects like messages, stories, signatures and symbols, of which the actors may not be aware of their functions in
interaction.

Ethno-methodology covers the methods for information collection that might serve as a basis for developing task
model 1 (and no more than this since ethno-methodology only covers information on the "current" state of a task
domain). However, the methodology for the collection of data and the structuring into a total task domain
description is often rather special and difficult to follow in detail. The general impression is that CSCW design
methods skip the explicit construction of task models 1 and 2 and, after collecting sufficient information on the
community of practice, immediately embark on specifying the UVM, based on deep knowledge of the current task
situation that is not formalized. This might cause two types of problems: on the one hand, the relation between
specifications for design and analysis of the current task world might depend more on intuition than on systematic
design decisions; on the other hand, skipping task model 2 may lead to conservatism in view on organizational and
structural aspects of the work for which a system is to be (re)designed.

4. CONCEPTUAL FRAMEWORK FOR GTA
The framework for groupware task analysis that is presented here is based on comparing the different approaches
mentioned earlier, and on an analysis of existing and proposed systems for HCI and CSCW (see [14]).

The framework as such is intended to structure task models 1 and 2, and, hence, as a guidance for choosing
techniques for information collection in the case of task model 1. Obviously, for task model 2 design decisions
have to be made, based on problems and conflicts that are represented in model 1, in combination with requirement

specifications as formulated in interaction with the client of the design. For a discussion of these design activities,
see [14].

Task models for complex situations need to be composed of different aspects. Each describes the task world from a
different viewpoint, and each relates to the others. Consequently, the resulting final task model will be redundant at
the level of representation for human readers. This will allow designers to read and to design from different angles,
and provide slots for design tools to guard consistency and completeness. The three viewpoints (focus on agents,
work, and situation, respectively) that we will apply in our approach are a superset of the main focal points in the
domain of HCI as well as CSCW. Both design fields consider agents (‘users’ vs. ‘cooperating users’ or user
groups) and work (activities or tasks, respectively the objectives or the goals of “interaction’ and the cooperative
work). Moreover, especially CSCW stresses the situation in which technological support has to be incorporated. In
HCI this is only sometimes, and then mostly implicitly, considered. In this section we will elaborate our conceptual
framework.

4.1 Agents

The first aspect focuses on agents. “Agents” often indicates people, either individual or in groups. Agents are
considered in relation to the task world, hence, we need to make a distinction between agents as acting individuals
or systems, and the roles they play. Moreover, we need the concept of organization of agents. In situations where
modern information technology is applied, actors will sometimes be non-human agents, or systems that comprise
collaboration between human agents and machine agents.

4.1.1 Actor

This label mostly refers to individual persons. Important for task modeling is to identify relevant types of actors,
and to characterize them on relevant characteristics. Types may be identified based on two different types of
variables: (1) psychological characteristics like cognitive styles or spatial ability (see [15]); and (2) task related
characteristics like expertise or knowledge of information technology.

4.1.2 Role

Roles indicate classes of actors to whom certain subsets of tasks are allocated, by free choice or as the result of the
organization. By definition roles are generic for the task world. More than one actor may perform the same role,
and a single actor may have several roles at the same time. Roles may be performed temporarily, be negotiated
between actors and accepted or refused. Actors may have internal (mental) representations of their own roles and
others' roles and roles may be represented externally by instrumental or symbolic behavior and by objects (white
coat, stethoscope, and wig).

4.1.3 Organization

‘Organization’ refers to the relation between actors and roles in respect to task allocation. The organization
describes the agent structure in the task domain. Part of the organization is generic (as far as the structure of roles
is concerned), another part concerns the current episode in the history of the task world (the organization as far as
dependent on current individual actors and the roles they currently perform). Delegation and mandating
responsibilities from one role to another is part of the organization, as is the way roles are allocated to actors. In
organizational structure roles can be hierarchically related in several ways: a role can be a subtype of another role (
a sales manager is a manager), or roles may be part of a role (a nurse is part of the company health department,
which is part of the personnel division).

4.2 Work

Some approaches refer to goals as the unit of description of work (GOMS: [4]), but we prefer to focus on the
structural as well as dynamic aspect of work, hence, we will take ‘task’ as the basic concept, and ‘goal’ as an
attribute. The concepts of task and goal in most frameworks have either a many to one or a one to one relation —
several tasks may have the same goal, and each task has exactly one goal. In activity theory tasks are referred to as
‘actions’ (which are, like in HCI task analysis approaches, considered to be hierarchically structured), where long-
term tasks are referred to as ‘object’ or ‘motive’ (Nardi, [13]). We make a distinction between tasks and actions in
the ‘classical’ HCI terminology, and, moreover, we will elaborate task structure and the structure-related concepts
of protocol and strategy.

4.2.1 Task

Tasks can be identified at various levels of complexity. The unit level of tasks needs special attention. Payne and
Green (in [16]) call this the ‘simple task’, but this notion may either indicate an artifact of a system, or a
psychological concept, which sometimes results in ambiguity in analysis. We need to make a distinction between
(1) the lowest task level that people want to consider in referring to their work, the ‘unit task’ (Card, Moran, and
Newell, [4]); and (2) the unit level of task delegation that is defined by the tool that is used in performing work,
like a single command in command driven computer applications. This last type of task we will call ‘Basic task’
(Tauber, [8]). Unit tasks will often be role-related.

Complex tasks may be split up between actors or roles. Unit tasks and basic tasks may be decomposed further into
(user) actions and (system) events, but these cannot really be understood without a frame of reference created by
the corresponding task, i.e., actions derive their meaning from the task.

4.2.2 Task structure

The task structure will often at least partially be hierarchical. For the indication of temporal order and dependency
structure, concepts like the ‘constructors’ of Scapin and Pierret-Golbreich ([6]) are relevant. Task structures for
task model 1 are not always known by single actors, mainly when different roles are involved in performing
different subtasks. On the other hand, performance on certain subtasks may influence the procedures for other
subtasks.

4.2.3 Actions

Actions are identifiable components of basic tasks or unit tasks, which have a meaning in performing a unit of
work, but which derive their meaning only from the task they are part of. For instance hitting a return key has a
different meaning depending on whether it concludes a command, or confirms the specification of a numerical
input value. The speech act of confirmation has a different meaning depending on whether it follows another
person's question or command. On the other hand, actions are the smallest elements of a basic or unit task that
change or define the meaning of that task. In describing actions, the goal is to identify the meaning, not the
physical characteristics.

In Activity theory these components seem to be equivalent to ‘operations’, which are at the level of automatism
and the elements of subconscious feed-back loops. This theory stresses the phenomenon that actions may become
operations by continued learning and experience and that they must become ‘actions’ again when the operations
are frustrated. Typical actions in HCI and CSCW are the specification of objects or events, and speech acts.
Actions may aim at changing (or operating on) attributes, ‘location’ or existence of objects, change attributes of
the environment, or may effect mutual task performance between different actors. Actions that concern the
‘content” of an object may often be considered to act on other objects that are contained in the current object
(‘themes’, see below). Actions, as parts of basic tasks or unit tasks, are often not explicitly ‘known’ (i.e.,
verbalizable) or actors are reluctant or unable to be very precise in this respect.

4.2.4 Protocols

This concept indicates actual ‘rules’ as turn out to be applied for decomposing tasks, to be distinguished from
‘rules’ that may be stated explicitly in instructions which are sometimes not actually followed. Protocols may be
situated, i.e., the environment and the presence of actors with certain roles may constitute conditions for protocols
to be triggered.

4.2.5 Strategies

‘Strategies’ indicate structures that can be considered protocols used mainly by experts or typically preferred by
them. These structures will often be situated in the same way as protocols are. Strategies may have started from
explicit problem solving and knowledge formation episodes and subsequently have become implicit expert
knowledge. Strategies will be role related.

4.3 Situation
Analyzing a task world from the viewpoint of the situation means detecting and describing the environment
(physical, conceptual, and social) and the objects in the environment. Object description includes an analysis of the
object structure.

4.3.1 Object

Each thing that is relevant to the work in a certain situation is an object in the sense of task analysis. In this
framework, ‘objects’ are not defined in the sense of ‘object oriented” methods. Objects may be physical things, or
conceptual (non-material) things like messages, gestures, passwords, stories, or signatures. Non-material objects as
well as physical objects may in the task situation be referred to by external representations of different character:
verbal labels, graphics, metaphors, gestures. Actors that perform a certain role may be objects in a task situation
and will be labeled “active objects’. Non-human system components like computer based agents may also be active
objects.

The identification of relevant objects will depend on the condition of knowledge (explicit or implicit) and on
whether the object figures in a task for a single person or in group situations. Relevant objects may be used to
transport meaning and information between different agents without any of them being aware of the objects’ nature
(e.g., anecdotes that contain strategic information). As far as explicit knowledge is involved, analysis of verbal
material from archival sources or from interviews may be of help, starting with the identification of nouns in
relation to task references. For implicit knowledge about objects, observations and ethnographic methods have to
be used, both for detection and for description.

4.3.2 Obiject structure

In order to describe the semantics of objects, two kinds of relations between object types have to be identified.

1. Obiject types are related via a type hierarchy, indicating sub-type - super-type relations. Sub-types inherit
the characteristics of their super-type as far as no further specifications have to be added. Analysis will reveal the
exact relations of object types of certain levels in a type hierarchy featuring in the task world.

2. Semantic relations between object types may metaphorically be indicated by place relations, where a certain
type of object can be ‘in’ or ‘on’ another object type (Tauber, [8], uses the concept ‘theme’ for this relation in his
ETAG formalism), and where objects may ‘move’ from one place to another (each place being provided by an
object). Apart from the relation between object types, objects will be related to tasks as agent (active objects), as
subject, or as featuring in conditions of task structures. The identification of object structures will be an analytic
(HCI type) activity, based on verbal protocols from actors and on systematic observation of the situational
relations in which objects are used.

4.3.3 Environment

The task environment is the current situation for the performance of a certain task. It includes actors with roles,
conditions for task performance and for strategies and protocols, relevant objects, and artifacts like information
technology that are available for subtask delegation. The history and temporal structure of relevant events in the
task situation is part of the actual environment. The environment features as condition for task structures (inclusive
protocols and strategies as far as these are situated). The analysis and description of environments often will need
ethnographic methods.

5. SOURCES OF KNOWLEDGE AND METHODS OF COLLECTING THE KNOWLEDGE
Collecting task knowledge for analyzing the current situation for a complex system has to start by identifying the
relevant knowledge sources. In this respect, we refer to a framework derived from [2], see Figure 2.

task world individual Group

knowledge
explicit a. knowledge and skills c. models/stories/instructions
implicit b. intuition/expertise d. culture/community of practice

Figure 2 Dimensions of knowledge of complex task domains

Relevant task domain information may have to be collected focusing on different phenomena, using different
methods of data collection. Based on an analysis of the character of the knowledge sources in this framework,
different methods are identified to collect all information needed to construct a model of the current task world.

5.1 Collecting task knowledge

Going from knowledge that is available from professionals in the task world and domain experts, via knowledge
that is present in the culture and in the social environment towards artifacts and the physical environment, we
encounter knowledge in the cognitive psychological sense, awareness and anecdotal material in the culture, and
traces of manufacture and use as well as environmental opportunities and constraints.

Going from explicit knowledge, via skills and rule based behavior, through intuitive and instinct-like behavior in
individuals and groups and culture, we meet documented knowledge and conscious representations, stories and
myths, as well as unspoken and unspeakable insights that still prove to be valid for guiding or monitoring adequate
behavior in the context of use.

For task knowledge in cell a, psychological methods will be used including those elaborated by [7] and [5]:
interviews, questionnaires, think-aloud protocols, and (single person oriented) observations. For knowledge
indicated in cell b observations of task behavior will have to be complemented by hermeneutic methods to
interpret mental representations (see [15]). For the knowledge referred to in cell ¢ the obvious methods concern the
study of artifacts like documents and archives. In fact all these methods are to be found in classical HCI task
analysis approaches.

The knowledge indicated in cell d is unique in that it requires ethnographic methods like interaction analysis (see
[2]). Moreover, this knowledge can be in conflict with what can be learned from the other sources, as is already
shown in the examples presented in the previous sections. First of all, explicit individual knowledge often turns out
to be abstract in respect to observable behavior, and turns out to ignore the situatedness of task behavior. Secondly,
explicit group ‘knowledge’ (e.g., expressed in official rules and time schedules) often is in conflict with actual
group behavior, and for good reasons. In fact, official procedures do not always work in practice and the literal

application of them is sometimes used as a political weapon in labor conflicts as a legal alternative for strike. In all
cases of discrepancy between sources of task knowledge, ethnographic methods will reveal unique and relevant
additional information that has to be explicitly represented in task model 1.

The allocation of methods to knowledge sources should not be taken too strictly. In fact the knowledge sources
often cannot be located completely in single cells of the conceptual map. The main conclusion is that we need
these different methods in a complementary sense, as far as we need information from the different knowledge
sources.

It can be shown that different techniques of date collection and date analysis are needed for different types of
knowledge, and these techniques seem to map systematically on to the "two-dimensional” framework of
knowledge sources. Related to the different types of knowledge and the techniques is the notion of reliability of
collection of information, and the validity of the resulting knowledge. We consider the validity of the knowledge
in relation to the history and time aspects of the task world. E.g., experts may base their current knowledge on
training they received in a different phase of equipment application, and documents may reflect a rule that is yet to
be accepted by the authorities who control task performance.

6. EUTERPE, A TASK ANALYSIS TOOL

Our task analysis environment EUTERPEL has been developed to aid the process of task analysis. Although it is still
under development, it is already being used in design projects in both educational and industrial settings. EUTERPE
was developed because task analysis is still an activity that needs support. Task analysis is useful activity but it is
often also a very unstructured and time-consuming activity. Many methods exist, but thoughts on task models and
what they describe exactly have not been stabilized yet. Furthermore, task analysis methods usually only deal with
task modeling and not really with task analysis. After the task world has been modeled it is up to the analysts to
interpret the task model and find out where causes of problems can be found or where there is room for
optimization of the work. These may be one of the reasons that cause task analysis to be both ineffective and
inefficient.

A task model that can describe the task world including cooperative aspects and that allows some form of analysis
could improve the task analysis process and outcome. Preferably the analysis of the task model should be done
(semi-) automatically, thereby reducing the required effort of the analysts. In [17] a formal approach based on
model checking techniques is described for analyzing user interfaces. A similar approach could also be applied to
analyzing task models. However performing a formal analysis of a task model requires a formal representation of
the task model that is suitable for doing an analysis, especially for analyzing cooperation. The task model therefore
needs to be based on a task analysis theory that recognizes the cooperative aspects of the task world.

Although a formal analysis can be the basis for analysis it is not on the level analysts prefer to work. Hence
representation tools can effectively hide the formalism and provide means to assist in analyzing the environment
that is being studied. In addition, a tool can also provide more structured ways of doing task analysis. The next
sections describe such a tool - EUTERPE - based on Groupware Task Analysis that supports formal analysis both on
a logical and a visual level. Both the used models and the analysis primitives will be described in the next sections.

6.1 Theoretical background

During task analysis many aspects are modeled. Which aspects are modeled and which are not, is part of an
ongoing discussion among scientist and practitioners. We have based our tool on an ontology which gives structure
to the relevant aspects of the task world that we think are important. The next sections give a short overview of the
ontology, for more information on the background of the ontology see [18].

6.1.1 A Task World Ontology

EUTERPE is based on a task world ontology that describes the way we look at the task world during task analysis.
This ontology is derived from the conceptual framework of GTA that was described in the previous sections. It
defines the relevant concepts and relationships between them that we regard relevant for the purpose of a task
analysis. The ontology is of great importance because it is the conceptual basis of all information that is recorded
and the way it is structured. Unfortunately, most task analysis methods do not define an ontology. Our ontology is
derived from the three viewpoints from GTA and incorporates aspects of several other task analysis methods.

1 EUTERPE is available at http://www.cs.vu.nl/~martijn/gta/

6.1.2 Concepts and Attributes

The concepts defined here are based on GTA and can be found in most other task models as well (with the
exception of the event concept). This section will define the concepts and the next section will define their
relationships in detail.

Object. An object refers to a physical or non-physical entity. A non-physical entity could be anything ranging
from messages, passwords or addresses to gestures and stories. Objects have attributes consisting of attribute-
name and value pairs. What can be done with an object is specified by actions, for instance move, change, turn
off etc. Furthermore, objects may be in a type hierarchy and can also be contained in other objects.

Agent. An agent is an entity that is considered active. Usually agents are humans but groups of humans or
software components may also be considered agents. Agents are not specific individuals (like "Chris™) but
always indicate classes of individuals with certain characteristics.

Role. A role is a meaningful collection of tasks performed by one or more agents. The role is meaningful
when it has a clear goal or when it distinguishes between groups of agents. A role is consequently responsible
for the tasks that it encompasses and roles can be hierarchically composed.

Task. A task is an activity performed by agents to reach a certain goal. A task typically changes something in
the task world and requires some period of time to complete. Complex tasks can be decomposed into smaller
subtasks. Tasks are executed in a certain order and the completion of one task can trigger the execution of one
or more other tasks. A task could also be started because of an event that has occurred in the task world.
Important for the task concept is the distinction between unit tasks and basic tasks, where (ideally) a unit task
should only be executed by performing one or more basic tasks. The relationship between the unit task and
basic task is interesting because it can indicate the problems that an agent may have in reaching his goals.
Event. An event is a change in the state of the task world at a point in time. The change may reflect changes
of attribute values of internal concepts such as Object, Task, Agent or Role or could reflect changes of
external concepts such as the weather or electricity supply. Events influence the task execution sequence by
triggering tasks. This model does not specify how the event is created or by whom.

name(string)
name(string) goal(string)
attribute(Name, Value)* Used_by
action(Name)*

name(string)
description(string)

name(string)
Subtask skills(string)

Trigaers attitude(string)
99 miscellaneous(string)

name(string)
goal(string)
start_condition(string)
stop_condition(string)
initial_state(string)
final_state(string)
duration(integer)
frequency(string)
type(enum)
user_actions(string)
system_operations(string)

Figure 3 Concepts and relationships

6.1.3 Relationships

The concepts defined in the previous section are related in specific ways. In this section we sketch the relationships
that we are using now. For each relationship the first-order predicate definition is given and explained. Figure 2
shows all the concepts and relationships together in a diagram.

Uses. The uses(Task,Object,Action) relationship specifies which object is used in executing the task and how it
is used. The Action specifies what is being done with the object. It typically changes the state of the object.
Triggers. The triggers(Task/Event, tiggeredTask, triggerType) relationship is the basis for specifying task flow.
It specifies that a task is triggered (started) by an event or a task and the type of the trigger. Several
triggertypes are possible such as OR, AND, NEXT to express choice, parallelism or sequences of tasks.

Plays. Every agent should play one or more roles. The plays(Agent, Role, Appointment) relationship also
indicates how this role was obtained. Currently, the Appointment parameter can be ASSIGNED, DELEGATED,
MANDATED Or SOCIAL.

e Performed_by. The relationship performed_by(Task, Agent/Role) specifies that a task is performed by an
agent. This does not mean that agent is also the one who is responsible for the task because this depends on his
role and the way it was obtained. When it is not relevant to specify the agent that performs the task, a role can
also be specified as the performing entity.

e Subtask. The subtask(Task, SubTask) relationship describes the task decomposition.

e Subrole. The subrole(Role, SubRole) relationship brings roles into a hierarchical structure. The subrole
relationship states that a role includes other roles including the responsibility for the task that encompass the
role. When a role has subroles the task responsibilities are added up for the role.

* Responsible. The responsible(Role, Task) relationship specifies a task for which the role is responsible.

e Used_by. The used_by(Object, Agent/Role, Right) relationship indicates who used which object and what the
agent or role can do with it. The agents' rights regarding objects can be of existential nature (CREATE and
DESTROY), indicate ownership (OWNER), or indicate daily handling of objects (USE, CHANGE).

Besides these relationships other relationships are used as well in EUTERPE but those have been expressed using
the above relationships. These relationships provide information that is shown in certain representations such as
templates. For instance for each concept a related(Concept) predicate has been defined which differs for each
concept.

6.2 Deriving representations

The ontology only defines a structure for the task model data and does not limit or dictate any representation. The
tool is based on a repository that contains the project data and all the representations are views on the repository.
The task world ontology is specified in a logic programming language (Prolog) and is the main data structure for
the repository. EUTERPE offers several different representations and all the representations are coherent because
each representation is build up on the fly out of the same information specified using the ontology. For instance a
task tree representation does not exist in the logical model but the structure is derived from the specified Subtask
relationships of tasks. By issuing queries to the Prolog engine all the relationship can be inspected. Naturally
EUTERPE allows most representations to be modified as well in which case the views need to assert the right facts
in the Prolog engine. For instance when a new subtask is added a new fact subtask(X,Y) is asserted. This way the
users of EUTERPE can work with the representations without having to deal with the logic representation
underneath.

Tk |idoguct| Aok | agare | s |
Fi e

T T

Praten
l\h.-.lu--l""'
by M b] |
— —
ol b
[e
e
T i R
PR [[FRE 1)
4
H=r|
ke § it
[,
[rein
s

Figure 4 Some representations

Besides task trees EUTERPE also offers templates that show detailed task information and some context information
such as the objects used in this task or the roles that are involved in this task or any of the subtasks. A somewhat
different kind of view is the web browser view. At the moment we are working on a process flow view based on
workflow representations.

Figure 4 shows some representations of EUTERPE.

6.3 Documenting a Task Analysis

EUTERPE has two ways of producing documentation. First of all by using the printing functionality. Task trees and
object hierarchies as well as lists of events and agent can be printed. If a tree does not fit on one sheet of paper
printing is automatically done tiled on multiple pages. The second way of producing documentation is by
exporting the specification to HTML. EUTERPE can generate a set of web pages including an applet containing a
task tree that allows online browsing of the task analysis results. As a result these pages are a "read-only" view of
the model since changes are not propagated back to the Prolog engine. All the web pages together can be seen as a
hyperlinked task analysis document because for each concept that referenced a hyperlink is added. For instance, a
reference to an object used in a task becomes a link to the description of that object and vice versa. Links to images
and video fragments are also generated. Figure 5 show the HTML output. For navigation purposes and for getting
a better overview a simple Java applet is also included. The applet shows the trees graphically and when a node is
selected the browser jumps to the corresponding entity. In large design teams the produced HTML documents
were put on a web-server and these constituted the main reference document for the other members of the design
team.

#: heatal | muplsiea - Hebicapa

[is [k Wesw G0 [orramcsiz [Halp

TN Ere-Ey N =
: J'Hm A Lmli;:--‘.’-—-—-rr-c:w.rl"ihm.llw.' ;]f,i‘hhmm-d
r:;t:l ShosHoa e | Meda| Tesks | ceecis | Raes| Agomis | Ewesis |
- = =1
Tasks .
Aler Beseruabion Task : Make Reservation
'L.f";.'u L LEN Fake Frgerrabon | Iniisd s5aia
Ak Collegue
Ak Price Goal Final siae
Ak Poicn ;
P e l'ask by Eer_achen =kart conditon
s For car | |Constucior | e Zmop onditon
g For tam il Local A
2l Local Hgerk -Bl L. i SRR
Cash pamen Sub tasks s Wekh page Lised obyscts
Chech Alermaives
Check Aralabiy Pesfarmed by Craban
Che il
Check detals Eccking agenk
bt Frepbvad rokes | Boom Baoker Fraguery
ek s
Chaose Hatel
e Roemi Trggess S
Croue Egqurpment Hassdaul [oot 2w 'I'IH—|thr e il 'ﬁ— [Lo Ay -i-“:---ﬁ-.-.-. | =
b Tragesed by
Confrm Fesrrunbion
Credit card pagrment T mE oI T Sty P
Debves Izpragers —|<.“i. Eaicirn
Determine Krquar s BT
Dietermme Eoom r
g - —| gy P e
Do wakeugp cals Iask = e
Enter data —
Exferrad FAR facisies A oy payigrarcy. |
Fil i seg-Soama = B rﬁ-ﬁr-l-r-'n' tivn || st Fas
= Dt Dores [
| Cisn dmresi Dn W= Ié" [
. I-\.'-uli AT
¥ inn wint feg= III
i IC'\Hl in "I:'I {fag.ad alizas ! =
1] | LIJ
[[\resroet Ly & pemet o

Figure 5 HTML documentation with tree applet

10

6.4 Multimedia Documents

As mentioned in the requirements the outcome of task analysis could be much more than text documents with
some graphical representations such as trees. EUTERPE offers support for images, sounds and videos. Figure 6
shows a video fragment of a guest arriving at the check-in desk of a hotel. Each concept instantiation can have of
list of media objects connected to it. For instance a certain object specification can have several images associated
with it. Also scanned documents or video fragments can be added to clarify certain tasks. We found that especially
video fragments turned out to be very useful because they are very effective in showing other members of the
design team who were not involved in the task analysis how the task world looks like. Video recordings resulting
from ethnographic study are scanned and broken up in short video clips that show some particular "hot spot"”. Such
video clips are typically between 1 and 3 minutes long and conversion to MPEG 1 format which makes them
suitable for playback without any special hardware support. When HTML pages are created the media files are
optionally included so that they can be viewed online as well.

Media Player

Figure 6 Example of a video fragment

7. ANALYZING A TASK MODEL
The representation of an ontology in logic allows us to analyze the task world in all its facets, the people with their
work and the organization they are part of. One criticisms on task analysis has always been the fact that it
remained unclear what exactly to do with the data: "we have the data, now what?" What should be next is an
analysis of the data, finding problem areas and designing a "New World" that relieves these problems. The
analysis that is usually done has an informal character and is based on insight on the data. However, we found that
some problem areas have a more general nature and that they are domain independent.

¢ Problems in individual task structures. The task structure is sub-optimal because too many subtask needs to
be done or certain tasks are too time-consuming or have a high frequency.

« Differences between the formal and actual task performance. In cooperative environments, usually
regulations and work practices exist which are documented, for instance as part of 1ISO9000 compliance. In
reality tasks are mostly not performed exactly as is described on paper and that "a single way" of how the
tasks are done does not exist. When persons in a cooperative environment think differently about what needs
to be done, problems may arise.

e Inefficient interaction in the organization. Complex tasks usually have many people involved who need to
communicate and interact for various reasons, such as for sharing knowledge about tasks or because of
responsibilities for the tasks. This can be the cause for time-consuming tasks but also for irritation between
interacting people.

¢ Inconsistencies in tasks. Tasks are defined but not performed by anyone or tasks are executed in
contradictory sequences.

* People are doing things they are not allowed to do. In complex environments often people have to do tasks
for which they did not get an official permission or they are using/changing objects they are not allowed to
touch.

Of course not all of these problems can be automatically detected. However using our model for describing task

world models many characteristics can be detected semi-automatically by providing the analyst with a set of

11

analysis primitives. Analyzing a cooperative environment can be done when the data present in the model is
transformed into qualitative information about the task world. EUTERPE basically has two primitives of qualitative
analysis. First of all visually in graphical presentations. When the data has certain features, these can lead to
modifications of the graphical representations. The second primitive is to analyze the data at a logic level by
putting some constraints on the model. Constraints that cannot hold may show interesting features of the task
world. These two primitives allow several ways of analyzing a task model. We distinguish four ways: inspection,
analysis, verification and validation. In the next sections these ways of analysis will be elaborated and clarified
with examples.

7.1 Inspection

Inspection means browsing through your data. A task model based on the ontology is a complex model. In projects
done by designers the task models typically consists of about 100 tasks, 20 object, 15 roles, 10 events and 10
agents. This a lot of information that needs to be understood. Graphical representations in general show specific
aspects of the data, for instance a tree shows the hierarchical structure of tasks. Other useful representations
include flow graphs, interaction diagrams, templates and hyperlinked structures. EUTERPE offers several of these
representations and provides a coherent and consistent view on the data.

Additionally a coloring mechanism can be used to tune the graphical representations e.g., the coloring of nodes in
a tree can be used to analyze task/agent allocation. The user can specify a condition for coloring of a node, for
instance "all tasks performed by Chris". The user can choose from a range of predefined conditions or specify the
condition directly in logic. Conditions can be arbitrarily complicated and range from showing task/agent allocation
to showing instances of delegation of task responsibility. Figure 7 shows an example of a task tree with colored
nodes. Another possibility is browsing through the concepts and seeing their details and relationships for instance
by following links in the HTML representation or viewing templates.

- Euterpe - [Hierarchy Yiewer - t30.gta]
B Fil= Edit Insett View ‘Window Help =18

D|(E] &[] S22

Task IDbiectI Fole | Agent | Ewent I

S Provide accomodation

—=tHandle reservations v = [[ETE D e ——Request reservation data | e
Check availability v | —s—Alter

Reje

Confirm reservation |
Stors reservationdata |

L—{Cancel reservation |

—=.—Chack resenvation vHERequesI checkindata |

Retrigve reservation data |
—IChack solvapility v | —=—Contact craditcard-cormparn) e
l_[:ﬂ«skcash payment |
—Pravide entrance to roomm |- ake key |
—{Show to room |
L{Store check in data |
e Provide information —=oDeterrming inforrmation requst
—IFind information |
L [Representinforrmation |

| N1ECK I QUESES

S Crowide service

—{Handle problems |
o 10Vi0E F&B farilities —an TPrayidg ro0r-Service |

ﬁPrmride minibar | -
EX| 3

For Help, prezss F1 A

Figure 7 A tree with colored nodes

i
.3

7.2 Analysis

Whereas inspection is merely "looking at" analysis is "finding out what is going on". Here the goal is to gain
understanding of the task world and to find the nature and causes of problems. This can be achieved by using
several different representations like those used in inspection and by using certain derived characteristics. For
instance, coloring all tasks in which a certain role is involved may help to gain insight in the involvement of a role

12

in the task structures. EUTERPE has built-in characteristics that can be checked on request but for the advanced
analyst it is also allowed to specify additional characteristics. Some examples of predefined characteristics are:

e agent X
all tasks perforned by agent X

e cooperative task:
all tasks where nore than 3 agents are invol ved

e boring_task:
all tasks that are performed nore than 20 tines per hour

 conl ex_task:
all tasks that have nore than 3 | evels of sub-tasks

Cooperation can be seen as a dependency or interaction between certain tasks performed by different agents. Using
that definition it is possible to define an expression that shows the frequency of interaction or how tight the
cooperation is, for instance by counting the number of agents involved in a number of tasks. Because GTA looks at
an organization of people and tasks instead of looking at one person, tasks are explicitly related to agents, objects
and roles. All these relationships are established when the data is entered in EUTERPE.

7.3 Verification

This kind of analysis is on a more logical level. Verification concerns only the model as it has been specified. Only
a limited degree of verification of a task model can be supported due to the inherently lack of formal foundations
for task models. There is not a model to verify the task models with. The task world ontology merely defines the
concepts and relationships without any constraints. This was done deliberately to give the analyst as much freedom
as possible to specify what they find during data gathering. There are however constraints that we would like to
have satisfied independently of the specify domain that is being studied. For example we would like that for each
task there is at least one responsible role and that each task is really being performed by an agent. These
constraints can be specified as logical predicates and can be checked automatically. Examples are:

e unaut horized task performance:
a task that is performed by an agent who's role does not encompass the
responsibility for the task.

e unperforned tasks:
a task where no perforning agent has been specified.

* unhandl ed event:
an event where no task is being triggered.

 occurance of del egation:
a task that is being perforned by an agent other than one that is responsible
for the task.

« conflicting task sequence:
a sequence A triggers B triggers C and
the sequence A triggers Ctriggers B

These constraints are similar to the characteristics used in analysis. However, they have been defined irrespectively
to the specific study being done. They should hold in any domain. A task model were all constraints are obeyed
may be considered "better" than one that does not obey all the constraints. In other words the constraints allow us
to denote classes of model which may have an order of preference.

7.4 Validation

Validation of task models means checking if the task models corresponds with the task world it describes. In the
process of validation one may find that certain tasks are missing or there are more conditions that are involved in
executing a task. Often one finds that there are exceptions that had not been found in earlier knowledge elicitation.
Consequently validation needs to be done in cooperation with experts of the task domain and cannot be done
automatically by a tool. However it is possible to assist in the validation process for instance by generating
scenarios automatically that can be used to confront the person from the task world. Such generated scenarios are
in fact simulations of pieces of the task model. Generating simulations has not been implemented in EUTERPE but
recent work on early task model simulations[19] has shown promising examples of early simulations based on task
models.

7.5 Managing Conflicts

When doing an analysis of any of these types, problems or conflicts may arise. By conflicts we mean situations
that need to be handled by the analyst. Examples of conflicts are contradictory data gathered from different persons
describing the same task. In this case one of the persons may have made a mistake or forgot something. Another
possibility is that different persons really do the task in a different way in which case it is very interesting to note
this fact. Conflicts do not always need to be "solved" but they certainly require attention and should be seen as a
hint for possible interesting aspect of the task world. The ontology we use allows inconsistencies and others causes
of conflicts to be specified because we found in practice that it is often very important to be aware of these
conflicts. Many analysts or designers develop models of a task world with the goal of finding one model that

13

captures how the task world works. When modeling complex cooperative environments this is almost never the
case and the analysts should not have this one model as the most important goal.

8. CONCLUSIONS

This paper gives an overview of Groupware Task Analysis from both a theoretical and practical perspective. The
conceptual framework of GTA with the three viewpoints agents, work and situation, extends the classical task
analysis approaches and makes a clear link to CSCW approaches. From a practical perspective a task world
ontology was described that gives structure to the task models themselves and it was shown how the ontology is
used in practice with our tool EUTERPE. Task analysis includes both modeling and analysis activities usually with
an emphasis on modeling. A semi-formal approach based on the ontology allows various ways of analysis that are
supported in our tool.

9. REFERENCES
[1] Nigel Bevan (1994), ISO 9241-11 Ergonomic Requirements for Office Work With VDTs.

[2] Jordan , B. (1996), Ethnographic Workplace Studies and CSCW, in: D. Shapiro, M. J. Tauber and R.
Traunmueller, The Design of Computer Supported Cooperative Work and Groupware Systems , North-
Holland, Amsterdam.

[3] Johnson, P., Johnson, H., Waddington, R. and Shouls, A. (1988), Task-Related Knowledge Structures:
Analysis, Modeling and Application, in: Jones, D. M. and Winder, R., People and Computers IV pp. 35-62,
University Press, Cambridge.

[4] Card, S.K., Moran, T.P. and Newell, A. (1983), The Psychology of Human-Computer Interaction, Lawrence
Erlbaum Ass, Hillsdale.

[5] Sebillotte, S. (1988), Hierarchical planning as a method for task-analysis: the example of office task
analysis, Behaviour and Information Technology, vol 7(3), no. 275-293.

[6] Scapin, D. and Pierret-Golbreich, C. (1989), Towards a method for Task Description: MAD, in: Berlinguet,
L. and Berthelette, D., Work With Display Units 89 , Elsevier, Amsterdam.

[71 Johnson, P. (1989), Supporting system design by analyzing current task knowledge, in: Diaper, D., Task
Analysis for Human-Computer Interaction , Ellis Horwood, Chichester .

[8] Tauber, M. J. (1990), ETAG: Extended Task Action Grammar - a language for the description of the user's
task language, Proceedings of INTERACT '90, Amsterdam, Elsevier, Amsterdam.

[91 Oberquelle, H. (1984), On models and modeling in human-computer co-operation, in: van der Veer, G. C.,
Tauber, M. J., Green, T. R. G., and Gorny, P., Readings on Cognitive Ergonomics - Mind and Computers ,
Springer, Heidelberg.

[10] Tauber, M.J. (1988), On mental models and the user interface, in: van der Veer, G. C., Green, T. R. G,
Hoc, J-M., and Murray, D., Working With Computers: Theory Versus Outcome , Academic Press, London.

[11] Schael, T. (1996), Information systems in public administration: from transaction processing to computer
supported cooperative work, in: Shapiro, D., Tauber, M. J., and Traunmueller, R., The Design of Computer
Supported Cooperative Work and Groupware Systems , North-Holland, Amsterdam.

[12] Shapiro, D. (1996), Ferrets in a sack? Ethnographic studies and task analysis in CSCW, in: Shapiro, D.,
Tauber, M. J., and Traunmueller, R., The Design of Computer Supported Cooperative Work and Groupware
Systems , North-Holland, Amsterdam.

[13] Nardi, B. (1995), Context and Consciousness: Activity Theory and Human Computer Interaction, MIT
Press, Cambridge MA, 1995

[14] Van der Veer, G. C., van Vliet, J. C., and Lenting, B. F. (1995), Designing complex systems - a structured
activity, DIS'95, Symposium on Designing Interactive Systems, ACM Press, New York.

14

[15]

[16]

[17]

(18]

[19]

Van der Veer, G.C. (1990) Human-Computer Interaction: Learning, Individual Differences, and Design
Recommendations, Ph.D. Dissertation Vrije Universiteit, Amsterdam.

Payne, S.J. and Green, T.R.G. (1989), Task-Action Grammar: the model and its developments, in: Diaper,
D., Task Analysis for Human-Computer Interaction , Ellis Horwood, Cambridge MA.

d'Ausburg, B. (1998), Using Model Checking for the Automatic Validation of User Interface Systems,
Proceedings of DSV-1S98, Abingdon UK, Springer-Verlag, Wien.

van Welie, M., van der Veer, G. C., and Eliéns, A. (1998), An Ontology for Task World Models,
Proceedings of DSV-1S98, Abingdon UK, Springer-Verlag, Wien.

Bomsdorf, B. and Swillus, G. Early Prototyping based on executable task models, CHI '96 Coference
Companion, Canada, Vancouver.

15

	INTRODUCTION
	TASK ANALYSIS IN HCI DESIGN
	Analyzing the current task situation (Task model 1)
	Envisioning the future task situation (Task model 2)
	Specifying technology (The user's virtual machine)
	HCI task models represent a restricted point of view

	DESIGN APPROACHES FOR CSCW
	Ethnography
	The scope of ethnography

	CONCEPTUAL FRAMEWORK FOR GTA
	Agents
	Actor
	Role
	Organization

	Work
	Task
	Task structure
	Actions
	Protocols
	Strategies

	Situation
	Object
	Object structure
	Environment

	SOURCES OF KNOWLEDGE AND METHODS OF COLLECTING THE KNOWLEDGE
	Collecting task knowledge

	EUTERPE, A TASK ANALYSIS TOOL
	Theoretical background
	A Task World Ontology
	Concepts and Attributes
	Relationships

	Deriving representations
	Documenting a Task Analysis
	Multimedia Documents

	ANALYZING A TASK MODEL
	Inspection
	Analysis
	Verification
	Validation
	Managing Conflicts

	CONCLUSIONS
	REFERENCES

