
Pattern Languages in Interaction Design:
Structure and Organization

Martijn van Welie, Gerrit C. van der Veer
Vrije Universiteit, Faculty of Sciences, Department of Computer Science,

Sub section "Human Computer Interaction, Multimedia & Culture",
 de Boelelaan 1081a, Amsterdam, The Netherlands, {martijn,gerrit}@cs.vu.nl

Abstract: Now that individual patterns for Interaction Design have started to appear, the issue of structuring
collections of patterns into Pattern Languages becomes relevant, both from a theoretical and a practical
perspective. In this paper, we investigate how Pattern Languages in Interaction Design can be structured in a
meaningful and practical way. A top-down approach is taken where patterns for Interaction Design are
organized hierarchically, from high-level design problems to low-level design problems. In addition, the
usefulness of additional views and classifications for practical use are discussed.

Keywords: Patterns, Pattern Languages, Interaction Design, Web design, Mental models

1 Introduction 2 The idea of a language
The use of patterns in Interaction Design, or related
fields such as web design and GUI design, is slowly
gaining momentum in practice. After initial
investigations of the applicability of patterns for
Interaction Design (Borchers 2001), actual patterns
collections are now publicly available in books (van
Duyne, 2002, Graham 2003, Borchers 2001) or
online (van Welie, 2000, Tidwell 1998). With a total
count of more than 250 published patterns, the
organization and classification of patterns is
becoming a practical issue. Pattern organization is
necessary to facilitate the selection of individual
patterns but also to find patterns that are applicable
in a broader context of any given design problem.

An individual pattern may already be very valuable
for designers but when patterns are related to each
other we can potentially reach a far more valuable
thing. Such a set of connected patterns is called a
pattern language. When Alexander wrote his book
on architecture design patterns (Alexander et al
1977), it did not just contain patterns; the patterns
formed a language. His language was hierarchical
and started out on the level of cities, then
neighbourhoods, houses until the level of windows
or seats was reached. In Alexander’s idea, the
language actually “generated” the design by
traversing from high level patterns to the lowest
level of patterns. From the design of cities down to
the design of window seats, a hierarchy of scale.

A pattern by itself is just a small piece of the entire
design knowledge “puzzle”. Each pattern describes a
proven solution to a problem in a certain design
context. When all the pieces of the puzzle are “put
together”, we can see how an entire body of design
knowledge is unfolded. Understanding this puzzle is
the long-term goal in pattern-research. It will show
the paved roads of design, but it will also say when
the road should be abandoned in search of new and
innovative solutions.

The question is now whether we can create a similar
sort of pattern language for Interaction Design. One
big difference with architecture is that user
interfaces are not strictly hierarchical in a
geometrical sense. There is certainly a 2D display
involved but what is shown on it varies over time.
Therefore, a strict hierarchy based on the usage of
screen estate is not suitable for interaction design.
However, the hierarchical nature of architectural
patterns can also be interpreted as a hierarchy of

This paper was published at Interact 2003

problems. The highest level problems are broken up
in smaller problems for which solutions appear to
exist. They just happen to map directly to a
geometrical metaphor in architecture, working from
large areas to small areas. The important thing to
understand is that such a problem-hierarchy
approach can be applied to other domains as well.

For Alexander the ‘language’ idea was the most
important way to structure and relate patterns to
each other. However, it is by no means the only
possible organization. Other fields that have
‘adopted’ patterns such as Object Oriented Software
Design, use a different organization, categorizing
them in creational, structural and behavioural
(Gamma et al 1995). That categorization is a
pragmatic one that makes sense in that field,
although it does not match Alexander’s ideas. The
question now arises whether we should try to form
pattern languages in the Alexandrian sense or
whether we should find more specific organizations
that suit Interaction Design better. In Interaction
Design several alternative organizations have been
proposed. Mahemoff (1998) distinguishes patterns
for tasks, users, user-interface elements, and entire
systems. Fincher (2000) and Mullet (2002) also
investigated possibilities for structuring pattern
languages. However, most of these approaches were
developed at a time when hardly any patterns had
been written which made it difficult to come up with
a sensible organization scheme. More recently,
substantial bodies of patterns have been published,
e.g. van Duyne et al (2002) which makes the
discussion more relevant. Now that we have patterns
and we are starting to find out how to write patterns
that make sense, we can re-investigate the directions
for pattern languages.

3 Connecting patterns
The basic assumption in the concept of a pattern
language is that patterns are related to each other,
forming a network of connected patterns. These
relationships are at the heart of the pattern language
because they create actual additional value over
single patterns. That additional value is the kind of
synergy we are looking for when building pattern
languages. In the patterns that are publicly available,
there are already patterns that ‘link’ to another
pattern in several different ways. A closer look
reveals that there are some fundamental
relationships distinguishable, resembling the types
of relationships known from Object Oriented

Modelling. To illustrate these relationships, we will
look at web design patterns as an example.

3.1 Aggregation
Consider the SHOPPING CART pattern. Using this
pattern users can manage a list of items in a cart.
The cart is actually a persistent list of items on
which users can perform some operations such as
delete, view, change quantity. This basic behaviour
is covered by the LIST BUILDER pattern. Similarly,
the checkout procedure is actually just a WIZARD
with specific steps such as ‘specify delivery
address’, ‘payment selection’, ‘confirm’ etc. The
SHOPPING CART is a pattern that aggregates several
other patterns. This is a form of a “has-a”
relationship. The SHOPPING CART has a LIST
BUILDER and also has a WIZARD.

3.2 Specialization
Patterns can also be specializations of other patterns.
For example, the ADVANCED SEARCH pattern is
basically a SIMPLE SEARCH but with extended
options. It “inherits” the basic idea from the SIMPLE
SEARCH pattern and extends it with advanced
scoping, term matching and output options. We call
this a “is-a” relationship, one pattern is a more
specific version of an other pattern.

3.3 Association
When you are designing the “shopping” experience
for a particular site, there are several patterns that
may also be of use. For example, when you
construct a PRODUCT COMPARISON you could offer
the possibility to purchase the item directly from
there, using the SHOPPING CART pattern. This is not
a “has-a” or “is-a” relationship but simple a
“related-to” relationship. A pattern may be
associated to other patterns because they also often
occur in the larger context of the design problem, or
because the patterns are alternatives for the same
kind of problems.

4 A pattern language for
interaction design

If we try to apply Alexander’s idea for a pattern
language of scale, we must adopt the interpretation
that ‘scale’ means scale of ‘problems’ rather than
geometry. In Interaction Design there is certainly a
‘scale hierarchy’ of problems. We may not always
be explicitly aware of it but it is the hierarchy we
mean when talking of top-down design. Usually
design is a top-down activity where we start with
gaining understanding of the users and their tasks,
the client’s wishes, technical environment, business

context etc. Taking the example of web design
again, design continues by laying out the
foundations of the application in terms of the site
concept, information architecture, and basic
functionality. The concept outlines the basic
characteristics of the site that will be filled in later
on up to the point where individual screens and
widgets are laid out. Such a top-down approach will
‘generate’ a design when patterns are available at all
levels. This network of patterns uses all three kinds
of connections between patterns. In the patterns
themselves the type of connection is usually not
made explicit but it is simply embedded in the
pattern in a natural way.

When looking at such a networked set of patterns,
we can also see layers of patterns emerging, when
going from high level patterns to lower level
patterns. These layers are rough delineations of the
typical levels that are encountered in design. The
levels we have identified so far are posture,
experience, task and action.

4.1 Posture type patterns
Every site or application is there for a purpose or
has a reason for existence, for commercial sites there
are usually business goals to be achieved while other
sites have more personal or social goals. Proper
design has its foundations in understanding why the
design project is started in the first place. These
stated business goal feeds into the choice for a ‘kind
of site’ that is adequate and effective.

From experience we know that many sites are
actually quite similar in the sense that they serve the
same goals and have a structurally similar site
concept. This can be called the site’s ‘posture’
(Cooper95), ‘genre’ (van Duyne et al 2002) or
‘type’. For example, small corporate sites are often
so similar that we can write patterns describing
them. The same goes for news sites, community sites
and so on. We can define several of such site
postures that can be taken as a basis for new site
design projects. Patterns that describe such typical
site postures are therefore called posture patterns.
Van Dyne et al (2002) also describe several of these
site postures.

A posture pattern describes what the essentials of
that posture are: what kind of site structure is usually

used, which elements typically make up the
homepage but also the main experiences that such a
site is supposed to offer. It is like deciding whether
you are going to design a ‘sports car’, a ‘family
saloon car’, a ‘4x4’ or a ‘city car’. Each of these has
specific characteristics and experiences that together
form a type of car.

Many sites can be directly derived from the known
postures but it is also common to design a site as a
mix of postures. When a posture has been selected,
several lower-level posture patterns will help to
define concept level issues such as homepage
design, promotion areas, navigation, templates etc.
User research or contextual inquiry will help
designers to decide which postures are most
relevant.

4.2 Experience patterns
From the basic posture and from user research,
designers will have to determine what are the main
user goals and tasks that need to be supported and to
what extent. We will call this the ‘experience’. The
user experience is not just about tasks and goals but
also about how the users reach their goals using a
site concept, how they perceive the site and whether
it gives them the appropriate satisfaction.
Experiences should therefore be understood as a
broader goal for which we are designing. The
experience-level patterns describe common
experiences and which lower level patterns can be
used to create that experience. Typical experiences
are activities such as “shopping”, “playing”,
“browsing”, “information gathering”, “problem
solving” or “sharing thoughts”. When describing for
example ‘shopping’, it is necessary to specify what
it is without taking into account the technology we
are using. When we understand how shopping works
we can then add references to lower level patterns
that can be used to create the experience. See Figure
1 for an excerpt of our shopping pattern where we
have tried to summarize the most important aspects
of shopping and have listed what lower-level
patterns can be used to implement them.

Experiences are the high level goals for which the
users come to a site. When applying it to car design,
experiences can include ‘sporty driving behaviour’
or ‘luxury feeling’.

Shopping Experience

www.bn.com

e-Commerce site but it can also

Hotlists

Double Tab with
Breadcrumbs so that people are fully aware of where they are and where they can go to.

Product Comparison or Product Configurator.

Virtual Product Display

Product Advisors or collect

Shopping cart or wish list

Figure 1: An excerpt of the “Shopping” experience pattern

From

Problem Users want to look for products of interest and potentially purchase them

Use when You are building a web site where you sell products, typically an
be a site with paid content. The sort of products that you are trying to sell may vary a lot, ranging
from books, electronics, to holiday and clothes. Some products can be delivered directly by
downloading it and others will have to be delivered 'later' by some logistical process. No matter
what product you are trying to sell, there are well known aspects to shopping that apply to all
products and to all ways of shopping.

Solution Create an online shopping experience that matches off-line shopping experiences

Shopping involves several fundamental activities that apply to both online and offline shopping
activities. These activities needs to be supported for each type of product and domain. How to do
that best is largely domain dependent, but some basic ideas can be defined:

- Discovering. People need to know what they can buy in the store, as far as they don't already
know it. Even if they have been in the store before they need to be informed of new products that
are for sale. Even if there are no new products to sell, there may be products that should be
brought under the users attention because of other reasons e.g. because they are discounted,
very popular etc. Use

- Browsing. Most people like to browse through the store for seeing what they have and whether
something attracts their attention. Browsing is made easier when products are categorized in ways
that customers expect them to be. The categories allow them to browse in a specific manner that
is a bit more directed than no structure at all. Use structured navigation such as a

- Comparing. Often people do not know exactly which product they want. They may have several
options that they want to compare using a

- Trying. When people try a product they want to make sure it is the right product for them.
Trying is all about 'seeing' certain aspects of the product. In many cases it is even possible to
'interact' with the product by 'virtually touching it', seeing close-ups, table of contents or a
preview of a part of the object. Sometimes it may also be possible to try the real thing with some
limitations on the use of it. In other words, create a

- Asking Opinions. Many shops have shop assistents that help customers to find the right
product for them. Online this is difficult to achieve but one could create
recommendations/ratings/comments of other people that bought the product.

- Choosing. Choosing is not the same as buying. Customers may choose several products and
before they actually start buying, discard several of them at the last minute. Give them a place to
keep products they may want to buy such as a

Action
Level

Task
Level

Experience
Level

Paging

Stepping

Sorting

Searching

Shopping cart

Wizard

Good defaults Choices Exit

List builder

Shopping

Teaser Menu

What’s new

Informing

Breadcrumbs

Identify

My Site

Login

Business Goals
Customer Satisfaction

Selling products

Information providing

Sitemap

Getting overview

E-Commerce
Product Support
Site

Posture
Level

Small Corporate
Site

Portal

Homepage3-column layout

Personal Site

Locating

Product
Comparisons

Action Buttons

Theme-sites Community Site

Progressive
Filtering

News Site
Templates

Playing

Discovering

News Letter

Browsing

Guided Tour
Poll Forum

Expressing

Figure 2: A partial pattern language for web design (centred around “shopping”)

Every site type has a primary experience that it
wants to offer. For example, an e-commerce site is
primarily for a shopping experience. However,
secondary experiences may include community-
building (between buyers) or information gathering
(about the products). Interaction designers need to
balance these experiences and create a consistent
user experiences for the entire site.

In practice, this will mean that an e-commerce site
will use some elements from secondary experiences.
In a similar way, a news site may use elements from
a shopping experience for dealing with premium
paid for content.

4.3 Task patterns
The task level is the level where we start to see most
concrete and well-known patterns such as SHOPPING
CART or PRODUCT COMPARISON. These will point to
lower-level task patterns such as WIZARD or LIST
BUILDER that are needed in high level task patterns.
Task patterns are describing solutions to small user
problems that are part of a higher level
“experience”. Typically a task pattern describes a

series of interactions on one or more objects for
solving a problem. Such a series corresponds to a
task sequence needed to achieve a task goal. Task
patterns are relatively domain independent. The
posture and experience patterns set the context
specifics and the task patterns are used to fill in the
blanks. Task patterns can often be ‘drawn’ using
flow diagrams and sketches.

4.4 Action patterns
Action level patterns are not really related to a
clearly defined user goal. A PUSHBUTTON or CLEAR
EXITS are actions that are only meaningful in real
tasks such as “order”, “go the next step” etc. We call
these “action patterns” and they are often similar to
widgets. They occur is almost all task patterns and
are the lowest level of building blocks we still want
to call a pattern. The solutions described in them are
usually specific uses of well known widgets or
describe custom-made widgets.

The different levels and associated patterns can be
shown in a graph of connected patterns, see Figure
2. In the graph all types of inter-pattern relationships

are shown using a directed arc. Actually, the
relationships are also contained in the patterns
themselves, every time a reference is made to other
patterns as part of a context or solution statement.
Figure 2 only shows a partial graph centred on the
shopping experience. Because of the complexity of
the domain, a complete graph could have more than
250 connected patterns leading to a, perhaps not
very comprehensible, diagram.

5 Pattern languages as mental
models

Although patterns describe proven solutions seen in
every day products, recognizing them as patterns
and structuring them takes substantial experience.
Entire languages therefore capture the knowledge of
the designers that wrote the patterns and make that
knowledge accessible to others. Novice designers
have a very limited pattern language in their
knowledge repertoire and as designers become more
experienced the scale and complexity of the pattern
language they use increase. Pattern languages are
definitely ‘living’ things.

A pattern language can be seen as a mental model
(van der Veer & Puerta Melguizo, 2002) that a
designer has. Writing down design knowledge using
a pattern language is an activity of making a
structured explicit representation of ones mental
model. One can wonder to what extent experts have
different mental models and therefore would write
different patterns and pattern languages. Already
today we see that patterns with the same name, but
written by different designers, differ in terms on
actual content. In addition, patterns may differ in the
scope they take and the priorities on specific issues
as described in the patterns.

Although there are differences in the mental models
of designers, the process of making them explicit is
likely to lead to convergence of their mental models.
When designers will have ‘access’ to the
externalized mental models of others through these
pattern languages, they will learn from each other
and adjust their own mental model of the field.
Therefore, a certain amount of convergence is
expected to follow though there will always be space
for more personal views. The implications of these
observations are that we should be aware that pattern
writers will write different patterns and that it will
not be easy to converge on a single pattern language
for Interaction Design in the near future.

6 Towards ‘complete’ languages
Now that we have reached the point where many
patterns are available, one may wonder how many
patterns will need to be added in order to make a
language ‘complete’. On the one hand, it is not
likely that we can state an objective criterion for
when languages are complete since they only
describe knowledge from a select group of writers.
On the other hand, we can expect some convergence
and need to find a way to discover missing patterns
and acknowledge patterns that have already been
written.

Therefore, one criterion could be that completeness
is reached when the available patterns can account
for all different qualitatively good designs one can
find. In other words, when every ‘usable’ website
out there can be described using a set of patterns, the
language is complete. We say ‘usable websites’
because we are only interested in describing ‘good’
design. Alexander (1977) states that a pattern
language is good when it is ‘morphological
complete’. However, whenever new good sites start
appearing the language may turn out incomplete
again. Nonetheless, it gives us a practical method for
mining patterns and perfecting pattern languages.

7 Organizing patterns for
practical use

Connecting all patterns into a pattern language is
one way of organizing them. A language can be
depicted as a graph showing all pattern names and
connections, see Figure 2 for a partial example of
such a graph. However, in practice when designers
or engineers need to search for patterns for a
particular problem, the graph may not be the best
representation. The graph shows the fundamental
relationships but there are many other practical ways
in which patterns from a collection can be classified.

One other organizing principle, is by function or
problem similarity. The idea here is that we group
patterns according to their functional aspects.
Certain groups of patterns may all deal with a
common problem and therefore group together.
Designers often need to make a decision about a
functional aspect and may be best served by a set of
patterns that can be classified as belonging to that
functional aspect. Functional aspects may include
navigation, searching, product display, layout and
so on. Most existing pattern collections use such an
organization. See Table 1 for an example that shows

the organization we currently use in our collection of
patterns, see www.welie.com/patterns.

Another organization principle is based on usability
defect. For example, when there is a problem in
certain task sequence a designer needs alternatives
for making the task execution time decrease. In that
case, designer may want to filter on patterns that
may increase entry speed or have an impact on the
error rate.

Clustering by user task and user type might also be a
relevant organization principle. We could have
patterns that deal with selecting things, finding
things, sorting, creating things for novice users,
intermediate users or expert users.

In practice designers often work on a particular site
posture and may be interested only in patterns that
apply to such sites. For example, when working on
an e-Commerce site, the collection can be filtered to
show only the patterns that are ‘connected’ from the
e-commerce site pattern. In this paper we have used
web design as the domain for constructing a pattern
language but it is also possible to create a similar
language for GUI design or for designing interface
for mobile devices.

For practical use several kinds of pattern
classifications may turn out to be useful. These are
merely different ‘views’ on a language while the
fundamental pattern relationships are still being
respected since those are embedded in the patterns
themselves. The possible views are largely built
using certain ‘attributes’ of patterns or the pattern
fields themselves.

8 Tools for pattern languages
Since it is clear that there are several useful ways to
organize patterns, designers should not be forced to
choose one particular view. A logical consequence is
that there is a need for tools to make patterns
accessible in more than one way. Tools can generate
different views or offer dedicated search
functionality for selecting appropriate patterns. A
web-based tool environment is probably best suited
for the task since a pattern language itself already
consist of hyperlinked patterns that allow users to go
from one pattern to another.

In addition, tools can assist in developing a pattern
language. Pattern writers should be able to
contribute patterns or comment on existing patterns.

Pattern ‘users’ could form a community that
evaluates patterns and helps others in discovering
new patterns or other examples of pattern usages.

Site types User Experiences
My Site
Portal
Commerce Site
Community Site
Branded Promo Site
Corporate Site
News Site
Brochureware Site

Shopping
Community building
Learning
Document retrieval
Entertainment

Navigation E-commerce
Bread crumbs
Double tab
Meta Navigation
Split Navigation
Repeated Menu
Progressive Filtering
Teaser Menu
Combined Menu
Fly-out Menu
Directory
Trail Menu
Scrolling Menu
Shortcut Box
Image Menu
Guided Tour

Shopping cart
Identify
Registering
Product Comparison
Product Configurator
Product Advisor
Premium Content Lock
FAQ
Newsletter

Page Elements Searching
News box
Home
Language Selector
Hotlist
Customization Window
Favourites
Poll
Footer Bar
Outgoing Links

Simple Search
Advanced Search
Search Area
Sitemap
Topic Pages
Search Tips
Search Index

Basic Interactions
List builder
Tabbing
Paging
Wizard
Parts Selector
Sorting
Enlarged Clickarea

Table 1: An example of a patterns classification

The potential users of such tools can be quite
diverse, ranging from software engineers, interaction
designers, visual designers, project managers to
evaluators and clients. Each of these will have their
own requirements for tool support, either in the
views that are supported or concerning the pattern
development functionality. Several projects are
already underway that investigate tool support for
patterns. For example, the UPADE tool (Javahery &
Seffah 2002) is a tool where designer can create
designs directly using patterns using drag-and-drop
like functionality.

http://www.welie.com/patterns

9 Conclusions
Creating pattern languages rather than pattern
collections offers significant added value. We have
described a way to apply the concept of a pattern
language in Interaction Design using Web Design as
an example. Our approach follows a top-down
design methodology where high-level design
problems are gradually decomposed into smaller
design problems. Besides the proposal for a
language for Interaction Design, we also argued that
the structure of the pattern language must be seen
separate from the different views we can have of the
collection of patterns. Such views can be of use in
different design contexts and should therefore be
supported by tools. Tools should facilitate the use of
patterns in practice by a variety of target users, not
just designers but also engineers and other
stakeholders in the design process.

We predict that the concept of a pattern language
with proper support will be one of the most effective
design knowledge management tools available. In
order to substantiate this claim we need to write
well-structured pattern languages with high quality
patterns that can be accessed through tools with
multiple ways to find and select patterns. Only an
evaluation of such a system can truly support claims
concerning the effectiveness of patterns in
Interaction Design.

References

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M.,
Fiksdahl-King, I. & Angel, S. (1977), A Pattern
Language, Oxford University Press,New York.

Borchers (2001) A Pattern Approach to Interaction
Design, John Wiley & Sons; ISBN: 0471498289

Cooper, A. (1995) About Face: The Essentials of
Windows Interface Design, John Wiley & Sons Inc;
ISBN: 1568843224

Dearden, a., Finlay, J, Allgar, E. & McManus, B. (2002)
Using Pattern Languages in Participatory Design. In
Binder, T., Gregory, J. & Wagner, I (Eds.) PDC
2002, Proceedings of the Participatory Design

Conference. CPSR, Palo Alto, CA.,2002. ISBN 0
9667818-2-1. pp. 104 - 113

van Duyne, D.K., Landay, J.A, Hong, J. 2002, The design
of sites, Addison-Wesley, Boston, US.

Fincher, S., Windsor, P. (2000), Why patterns are not
enough: some suggestions concerning an organising
principle for patterns of UI design, position paper
for CHI2002 workshop Pattern Languages for
Interaction Design: Building Momentum

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995),
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading,
Mass.

Graham, I. (2003), A pattern language for Web Usability,
Addison-Wesley, Boston, US.

Javahery, H., Seffah, A. (2002) A Model for Usability
Pattern-Oriented Designs, proceedings of
TAMODIA 2002, July 18-19 2002, Bucharest,
Romania.

Mahemoff, M. J. and Johnston, L. J. (1998). Pattern
Languages for Usability: An Investigation of
Alternative Approaches. In Tanaka, J. (Ed.), Asia-
Pacific Conference on Human Computer Interaction
(APCHI) 98 Proceedings , 25-31. Los Alamitos,
CA: IEEE Computer Society.

Mullet, K. (2002), Structuring Pattern Languages to
Facilitate Design, position paper for CHI2002
workshop “Patterns in Practice”.

Tidwell, J. (1998), Interaction Design Patterns, in
‘Proceedings of the Pattern Languages of
Programming PLoP’98’.

Van der Veer, G.C. & Puerta Melguizo, M.C. (2002).
Mental models. In: J.A. Jacko & A. Sears (Eds.)
The Human-Computer Interaction Handbook:
Fundamentals, evolving Technologies and emerging
apllications. Lawrence Erlbaum & Associates.
ISBN: 080583834. pp. 52-80

van Welie, M., van der Veer, G. & Eli¨ens, A. (2000),
Patterns as Tools for User Interface Design, in
‘International Workshop on Tools for Working with
Guidelines’, Biarritz, France, pp. 313–324.

	Introduction
	The idea of a language
	Connecting patterns
	Aggregation
	Specialization
	Association

	A pattern language for interaction design
	Posture type patterns
	Experience patterns
	Task patterns
	Action patterns

	Pattern languages as mental models
	Towards ‘complete’ languages
	Organizing patterns for practical use
	Tools for pattern languages
	Conclusions

